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Abstract​
Can transitory economic shocks affect long-term violent conflict risk? This paper studies this 
question using data on con ict events and desert locust swarm exposure across 0.25◦ grid cells in 
Africa and the Arabian peninsula from 1997-2018. A staggered event study approach shows that 
swarm exposure increases the average annual probability of any violent conflict in a cell by 1.8 
percentage points (64%) in subsequent years. Effects are driven by initial agricultural 
destruction: exposure to swarms in nonagricultural areas or outside the main crop growing 
season has no impact. Agricultural activity (but not average productivity) falls following swarm 
exposure, indicating persistent indirect economic effects which may reduce opportunity costs of 
fighting. The largest effects of swarms on con ict occur with a 7 year lag and there are no effects 
in the year of exposure, inconsistent with predictions based on changes in opportunity costs of 
fighting alone. Impacts of past exposure are concentrated in periods of social/political 
disruptions driven by other proximate causes (e.g., the Arab Spring, civil war). This creates the 
delay in the largest impacts of swarm exposure, and aligns with models of civil conflict 
emphasizing the role of grievances in conflict onset. Patterns of long-term impacts on conflict 
and heterogeneity by local unrest are similar for exposure to droughts, indicating the mechanisms 
are not specific to locust swarms. These results add motivation for policies mitigating the risk of 
agricultural shocks and promoting household resilience and recovery. 
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1 Introduction

A large economic literature explores the impacts on con�ict risk of transitory agricultural shocks

which do not permanently a�ect potential land productivity, such as weather and commodity price

�uctuations. This is an important policy concern given the prominence of agricultural livelihoods

in many of the areas most a�ected by civil con�ict, the threat to agriculture posed by climate

change, and the severe economic and human harms of civil con�ict (see e.g., Blattman and Miguel,

2010; Fang et al., 2020). Studies of this relationship focus on short-term impacts, and those that

analyze shocks to agricultural production are limited in their ability to identify causal mechanisms.1

This paper analyzes the dynamic long-term impacts of a severe transitory shock to agricultural

production�exposure to a desert locust swarm�on violent con�ict, and tests for evidence of income-

related mechanisms.

Desert locusts are the world's most dangerous and destructive migratory pest due to their po-

tential to form massive cohesive swarms (Cressman et al., 2016; Lazar et al., 2016), which e�ectively

constitute an agriculture-speci�c natural disaster. Climate change is creating conditions more con-

ducive to swarm formation (Qiu, 2009), potentially undoing progress from increased international

monitoring and control e�orts in recent decades. The arrival of a locust swarm often leads to com-

plete destruction of agricultural production and other vegetation (Symmons and Cressman, 2001;

Thomson and Miers, 2002). Swarm �ight patterns create quasi-random variation in the areas ex-

posed to agricultural destruction in a swarm's migratory path, and their migratory nature means

that exposure to a swarm does not increase future risk from locusts. Outbreaks of desert locust

swarms in a given region are also relatively infrequent over the last several decades, permitting

analysis of long-term e�ects. These characteristics make locust swarms a useful natural experiment

for analyzing how transitory agricultural production shocks a�ect the long-term risk of con�ict.

Using data on the location and timing of desert locust swarm observations from the Food and

Agricultural Organization of the United Nations (FAO) and of con�ict events from the Armed

Con�ict Location & Event Data Project (ACLED) and Uppsala Con�ict Data Program (UCDP),

I estimate a model of con�ict at the annual level for 0.25◦ (around 28×28km) grid cells between

1997-2018 across Africa and the Arabian peninsula.2 As severe transitory economic shocks may

have persistent indirect e�ects which could a�ect con�ict risk, beyond the initial direct impacts,

I de�ne exposure to a locust swarm as an absorbing treatment: cells are considered treated in

all periods following exposure. I estimate average impacts of swarm exposure as well as dynamic

1Several studies �nd that shocks to agricultural prices increase con�ict incidence (e.g., Dube and Vargas, 2013;
Fjelde, 2015; McGuirk and Burke, 2020; Ubilava et al., 2022). Impacts on agricultural productivity are speculated to
explain the widely-studied relationship between climate or weather shocks and con�ict risk (see Burke et al. (2015),
Carleton et al. (2016), Dell et al. (2014), Hsiang and Burke (2013), Koubi (2019), and Mach et al. (2019) for reviews),
though weather may a�ect con�ict through mechanisms other than agriculture and some studies �nd results that
are not consistent with e�ects through agricultural productivity (e.g., Bollfrass and Shaver, 2015; Sarsons, 2015) and
many reviews point to a need for more evidence on mechanisms.

2I include all countries where at least 10 locust swarms are reported during the sample period. Torngren Wartin
(2018) estimates short-term impacts of desert locusts on con�ict in Africa using similar data. That paper focuses
on potential measurement issues which I discuss in Sections 4.2 and 6.2, and does not consider long-term impacts of
locust swarms or mechanisms that are the main contributions of this paper.
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event study impacts using the Borusyak et al. (2024) estimator to account for staggered treatment

timing and potential heterogeneous e�ects, and test the sensitivity of the results to using other

di�erence-in-di�erences estimators.

Locust swarms increase the annual probability of any violent con�ict event occurring in a 0.25◦

grid cell by 1.8 percentage points (64%) on average in years after exposure to the swarm, compared

to una�ected areas in locust migration paths in the same country. I �nd no signi�cant impacts of

locust swarms on violent con�ict in the year of exposure or the following year but signi�cant and

large increases in subsequent years up to 14 years after exposure. Impacts are entirely driven by

cells with crop or pasture land and by swarms arriving in crop cells during the main growing or

harvest season in particular, indicating that e�ects are driven by the initial agricultural destruction.

I �nd limited evidence of con�ict spillovers outside of exposed cells, and the results are robust to a

variety of alternative speci�cations.

I interpret the results and evaluate income-related mechanisms through the lens of a commonly-

used model of individual occupation choice between di�erent livelihood activities and engaging in

armed con�ict (Chassang and Padró i Miquel, 2009; Dal Bó and Dal Bó, 2011; McGuirk and Burke,

2020). In the model, transitory agricultural shocks a�ect the short-term risk of con�ict by changing

both the returns to engaging in agricultural production�the opportunity cost mechanism�and the

returns to �ghting over agricultural output�the rapacity mechanism. I extend the model to allow

past agricultural production shocks to indirectly a�ect con�ict risk through a wealth or permanent

income mechanism triggered by costly consumption smoothing strategies. This wealth e�ect can

decrease long-run productivity, leading to persistent reductions in the opportunity cost of �ghting.

Drawing on models of grievance and con�ict (Collier and Hoe�er, 2004) and building on selected

studies of short-term impacts of agricultural shocks in African countries (Berman and Couttenier,

2015; Buhaug et al., 2021), I allow for time-varying social or political tensions to a�ect the cost of

and the returns to �ghting and propose a grievance mechanism a�ecting when a prior shock is more

likely to increase con�ict incidence.

The results do not align with predictions under an opportunity cost mechanism alone. Locust

swarms have no signi�cant e�ect on violent con�ict in the year of exposure or the following year

despite this being the period when the opportunity cost e�ect from direct reductions in agricultural

productivity should be strongest. This is true for measures of both output con�ict and con�ict over

territory or factors of production, indicating that the null immediate impact is not due to o�setting

e�ects of the opportunity cost and rapacity mechanisms.

Long-term con�ict risk also does not increase uniformly, with the largest e�ects on violent con�ict

risk coming 7-10 years after swarm exposure. This lag aligns with the gap between the main locust

exposure event in 2003-2005 and the onset of various con�icts in the sample countries caused by

the Arab Spring, multiple civil wars, and the spread of terrorist organizations. In line with this and

models of grievance and con�ict, I �nd that long-term impacts of past swarm exposure on violent

con�ict are concentrated in periods of greater civil con�ict and insecurity. This heterogeneity can

rationalize the null short-term impact on con�ict, which shows that severe agricultural shocks need
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not cause the onset of new con�ict. Fighting is inherently a group activity motivated by some

particular goal or grievance, and individuals in areas exposed to locust swarms may have lower

opportunity costs and therefore be more likely to mobilize around proximate drivers of violent

con�ict.

I directly test for evidence of persistent e�ects of swarm exposure on measures of economic

activity that could a�ect the long-term opportunity cost of �ghting, in line with a permanent income

mechanism. I �nd no signi�cant long-term e�ects on the Normalized Di�erence Vegetation Index

(NDVI) or on measures of local crop yields using remote sensing (Cao et al., 2025) or Demographic

and Health Survey (DHS) data (IFPRI 2020). This indicates no permanent decrease in agricultural

productivity, though analyses at the level of 0.25◦ cells may struggle to capture such e�ects when

the median locust swarm would a�ect just 6% of cell area. I do observe signi�cant long-term

decreases in crop area cultivated and suggestive evidence of increases in out-migration, indicating

transitions away from agricultural work. Together with evidence from other studies using survey

data to show persistent adverse e�ects of locust swarms on agricultural production and measures of

human capital, these results suggest that a long-term decrease in the opportunity cost of �ghting is

a plausible mechanism but more evidence from household-level analyses is needed to test it further.

Finally, to analyze whether the dynamic e�ects on con�ict risk I estimate are speci�c to locust

swarms I test impacts of exposure to drought, measured using monthly Standardized Precipitation

and Evapotranspiration Index (SPEI) data. I �nd large time-varying increases in con�ict risk that

are also driven by locations experiencing civil con�ict in surrounding areas, implying that the same

mechanisms underly the e�ects of both types of agricultural shocks. The long-term increases in

con�ict risk indicate that analyses de�ning shock `treatment' as transitory and estimating short-

term impacts using two-way �xed e�ects (the main method in studies of climate or agricultural

shocks and con�ict) are misspeci�ed for shocks with non-zero average long-term e�ects. I show that

such speci�cations result in downward-biased estimates of the short-term impacts of both locust

swarms and drought on violent con�ict, a�ecting the policy implications.

This paper makes several contributions to the literature. First, I add to our understanding of

the drivers of con�ict (Bazzi and Blattman, 2014; Blattman and Miguel, 2010; Buhaug et al., 2021;

Collier and Hoe�er, 1998, 2004; Grossman, 1999; Miguel et al., 2004), and the roles of climate (Burke

et al., 2024; Mach et al., 2020) and shocks to agricultural production (Crost et al., 2018; Harari

and La Ferrara, 2018; McGuirk and Nunn, 2025; Von Uexkull et al., 2016) in particular. While

a relationship between climate and con�ict has been repeatedly demonstrated, the mechanisms

driving this impact are not fully understood. Weather shocks a�ect a variety of economic and social

outcomes in addition to reducing agricultural labor productivity and agricultural output (Dell et al.,

2012, 2014; Mellon, 2022), but much of the literature has emphasized an opportunity cost mechanism

to explain increases in con�ict risk.3 The results of this paper indicate that the opportunity cost of

3Little attention is given to the rapacity mechanism in the climate-con�ict literature. Studies showing evidence of
opportunity cost and rapacity mechanisms in agriculture have primarily explored impacts on con�ict risk of changes
in global prices of agricultural goods (e.g., Dube and Vargas, 2013; Fjelde, 2015; McGuirk and Burke, 2020) rather
than shocks to local agricultural production. McGuirk and Nunn (2025) is an exception, analyzing impacts of drought
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�ghting mechanism alone cannot explain dynamic impacts of locust swarms and drought on con�ict

risk over time. Similar to Buhaug et al. (2021)'s analysis of short-term e�ects of drought on con�ict

but considering longer-term dynamics, I highlight the importance of grievances and insecurity in

determining when adverse e�ects of past shock exposure may lead to violent con�ict.

Second, I contribute to a broader literature on the dynamic long-term impacts of environmental

shocks and natural disasters. Many papers have explored how adverse environmental shocks can

have persistent e�ects on poverty and well-being (Baseler and Hennig, 2023; Carter and Barrett,

2006; Carter et al., 2007; Lybbert et al., 2004). Studies of the impacts of agricultural production

shocks on con�ict have focused on the short-term, with the exception of Narciso and Severgnini

(2023) who show that individuals in families more a�ected by the Great Irish Famine were more

likely to participate in the Irish Revolution decades later.4 More generally, the evidence on long-

term impacts of disasters such as hurricanes and droughts is limited, inconclusive, and focused on

a small number of outcomes (see Botzen et al. (2019) and Klomp and Valckx (2014) for reviews). I

study dynamic impacts of desert locusts swarms�an extreme shock to agricultural production akin

to a natural disaster�on con�ict risk and test whether patterns are consistent with an opportunity

cost mechanism, and �nd similar results when considering exposure to drought. The dynamic long-

term impacts on con�ict risk imply that studies estimating transitory short-term impacts of severe

economic shocks may be biased, even if the direct e�ects of those shocks are temporary.

Third, this paper adds a new dimension to studies on the economic impacts of agricultural

pests (Oerke, 2006), including desert locusts (see e.g., Thomson and Miers, 2002), and builds on a

small literature on the long-term impacts of pest shocks (Ager et al., 2017; R. Baker et al., 2020;

Banerjee et al., 2010). The range of many agricultural pests is expanding due to climate change

and globalization, and�though locust outbreaks have become less frequent in recent decades due

to increased monitoring�desert locusts are ideally situated to bene�t from climate change (Qiu,

2009). A small recent body of research links locust data with survey data and �nds that locust swarm

exposure adversely a�ects long-term education (Asare et al., 2023; De Vreyer et al., 2015), health

(Conte et al., 2023; Gantois et al., 2024; Le and Nguyen, 2022; Linnros, 2017), and agricultural

production (Marending and Tripodi, 2022) outcomes, but I am the �rst to study long-term impacts

of a pest shock on con�ict and explore potential mechanisms. The impacts of locust swarms on

long-term economic activity and con�ict risk should be considered in determining policy around

desert locust prevention and control.

on con�ict between pastoralists and farmers.
4To my knowledge, no other study has explored long-term impacts on con�ict risk of a transitory negative shock

to agricultural production. Crost et al. (2018) and Harari and La Ferrara (2018) estimate e�ects of weather shocks on
con�ict over 2 and 5 years. Iyigun et al. (2017) consider long-run e�ects on con�ict risk of a positive and permanent

agricultural productivity shock from the introduction of the potato to the Eastern Hemisphere.
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2 Background: Desert locusts

Desert locusts (Schistocerca gregaria) are a species of grasshopper always present in small numbers in

desert `recession' areas from Mauritania to India.5 They usually pose little threat to livelihoods but

favorable climate conditions in breeding areas�periods of repeated rainfall and vegetation growth

overlapping with the breeding cycle�can lead to exponential population growth. Unique among

grasshopper species, after reaching a particular population density locusts undergo a process of

`gregarization' wherein they mature physically and begin to move as a cohesive unit (Symmons and

Cressman, 2001), with adult winged locusts forming large mobile swarms. When swarms migrate

away from breeding areas and a�ect multiple countries, this is referred to as an outbreak or upsurge.

Climate change is expected to increase the risk of desert locust swarm formation and upsurges, as

these locusts can easily withstand elevated temperatures and the increased frequency of heavy

rainfall events can create conditions conducive to population growth (McCabe, 2021; Qiu, 2009;

Youngblood et al., 2023).

Desert locust swarms vary in density and extent, but the average swarm covers tens of square

kilometers and includes billions of locusts (Symmons and Cressman, 2001). About half of swarms

exceed 50 km2 in size (FAO and WMO 2016). The size of swarms is what makes them so destructive.

A small swarm covering one square kilometer consumes as much food in one day as 35,000 people and

the median swarm consumes 8 million kg of vegetation per day (FAO, 2023a), without preference

for di�erent types of crops (Lecoq, 2003). The arrival of a swarm can lead to the total destruction

of local vegetation (Symmons and Cressman, 2001; Thomson and Miers, 2002). For example,

during the 2003-2005 locust upsurge in North and West Africa, 100, 90, and 85% losses on cereals,

legumes, and pastures respectively were recorded, a�ecting more than 8 million people and leading

to 13 million hectares being treated with pesticides (Showler, 2019).

Extensive locust monitoring and control operations are conducted in countries at regular risk

from locust swarms. These are insu�cient to prevent all upsurges but can help limit their spread

and damages. These activities and knowledge of desert locust breeding patterns and swarm �ight

characteristics also inform e�orts to predict locust swarm formation and movements, but forecasts

remain highly imprecise (Latchininsky, 2013). Even given such information, farmers have no proven

e�ective recourse when faced with the arrival of a locust swarm; activities such as setting �res

or placing nets on crops or to capture locusts may slow damage but have little e�ect on locust

population (Dobson, 2001; Hardeweg, 2001; Thomson and Miers, 2002). The only current viable

method of swarm control is direct spraying with pesticides, which can take days to have e�ects as well

as being slow and costly to organize and requiring robust locust control infrastructure (Cressman

and Ferrand, 2021). Farmers in a�ected areas report viewing locust swarms as an unpredictable

natural disaster that is the government's responsibility to address (Thomson and Miers, 2002).

Households exposed to locust swarms use a variety of measures to cope with the adverse food

security and livelihood e�ects. Locusts may be eaten if they have not been sprayed with pesticides,

5Additional detail on desert locusts is included in Appendix C. Any time I use `locusts' in this paper I am referring
exclusively to desert locusts.
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but in most cases this is unlikely to substitute for lost production. In addition to seeking help

from social networks and food aid, households commonly report selling animals and other assets,

consuming less food, sending household members away, taking loans and cutting expenses, and

consuming seed stocks as coping strategies (Thomson and Miers, 2002). A swarm exposure shock

therefore represents a shock to income and household wealth as well as a shock to agricultural

productivity in the year of exposure.

Figure 1 displays the locations of desert locust swarm observations recorded in the FAO Locust

Watch database from 1985 (the �rst year they were recorded) to 2021, for the area of interest for

this study.6 As illustrated by the �gure, nearly all locust swarms are observed during periods of

major upsurges.

Figure 1: FAO Locust Watch swarm observations by year

1985 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021
Year

Note: Map created by author using locust swarm records in the FAO Locust Watch database. Each dot represents the location
of a single locust swarm observation, and the color indicates the year of the observation.

The characteristics of desert locust swarms make them a useful natural experiment for analyzing

the long-term impacts of agricultural production shocks on the risk of con�ict and testing income-

related mechanisms. First, the timing of upsurges and patterns of swarm �ight create quasi-random

temporal and local variation in swarm exposure. Locusts swarms are migratory and �y 9-10 hours

per day, generally downwind, easily moving 100 km or more per day even with minimal wind (FAO

and WMO 2016). Conditional on being in the migratory path during an upsurge, swarm �ight

6Desert locust swarms also a�ect other countries in the Middle East and South Asia, but not during the time
period of this study.
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patterns create quasi-random variation in exposure as some areas in the �ight path are �own over

and spared any damages.7 The arrival of a swarm also does not change future risk (Figure C3 shows

this empirically), so the direct shock to agricultural production is transitory even if indirect e�ects

may persist.

Second, the arrival of a swarm is e�ectively a locally and temporally concentrated natural

disaster a�ecting crops, pasture, and other vegetation (Hardeweg, 2001), but not directly a�ecting

other aspects of the economy. This contrasts with temperature and precipitation shocks which may

a�ect infrastructure or physiology as well as agricultural production. Third, the level of damage to

agriculture from swarms and lack of tools for farmers to prevent damages imply severe reductions

in agricultural production. This increases the potential for persistent adverse e�ects on well-being

due to e�orts to cope with the shock, and therefore for persistent e�ects on con�ict risk.

3 Conceptual framework

Weather a�ects the economy and society through multiple channels (Dell et al., 2012, 2014; Mellon,

2022), which is part of why recent reviews highlight the need for more research into the mechanisms

driving the relationship between weather and con�ict (Burke et al., 2024; Mach et al., 2020). One

key mechanism is e�ects on agricultural production, but other studies have pointed to physiological,

psychological, and infrastructural e�ects of weather shocks as also helping to explain impacts on

con�ict (Baysan et al., 2019; Burke et al., 2024; Carleton et al., 2016; Chemin et al., 2013; Dell

et al., 2014; Hsiang and Burke, 2013; Sarsons, 2015; Witsenburg and Adano, 2009). These channels

may be important in determining the e�ect of agricultural shocks on con�ict risk (Burke et al.,

2024), but for the purpose of this paper I focus on testing mechanisms operating through e�ects on

agricultural production and income. This seems appropriate for the case of desert locust swarms

which do not have direct e�ects on infrastructure or human physiology, though e�ects on institutions

and human psychology may be important and a subject for future study.

An important set of models in the economics literature on agricultural shocks and intergroup

con�ict uses an occupational choice framework (as in French and Taber, 2011; Heckman and Honore,

1990; Roy, 1951) where actors allocate their labor between productive activities and �ghting.8

Chassang and Padró i Miquel (2009) develop a bargaining model of con�ict where groups allocate

labor to crop production or �ghting over land, and Dal Bó and Dal Bó (2011) model individuals

choosing between a labor-intensive sector, a capital-intensive sector, and an `appropriation' sector

�ghting over output. McGuirk and Burke (2020) develop this latter model to allow both factor

and output con�ict and incorporate consumers who may also engage in �ghting. These models

emphasize how a shock to labor productivity in a given sector a�ects both the opportunity cost

of engaging in con�ict for individuals in that sector, as well as the returns to capturing output

or production factors in that sector. These are the opportunity cost and rapacity mechanisms,

7Figure C4 illustrates the local and temporal variation in exposure to swarms for the area around Mali.
8These models follow an early application by Becker (1968), who uses a similar setup to model interpersonal

con�ict such as theft.
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respectively.

In this section I present a simple streamlined model of occupational choice drawing on these

models but allowing for the possibility of dynamic long-term e�ects of a transitory productivity

shock. I follow Dal Bó and Dal Bó (2011) and others in treating �ghting as an individual/group

decision, rather than Chassang and Padró i Miquel (2009) and others who present con�ict as a

failure of a bargaining process between groups. This decision simpli�es the model and provides

a useful framework for presenting income-related mechanisms I use the model to build intuition

and generate testable hypotheses about the e�ects of agricultural shocks on con�ict. The objective

of these tests is to evaluate whether empirical e�ects are consistent with the opportunity cost

mechanism promoted in much of the literature on agricultural shocks and con�ict, or whether other

mechanisms are needed to explain dynamic e�ects over time.

3.1 Model

In the model, individuals in each time period allocate one unit of labor L to either agricultural

production, non-agricultural work, or violent con�ict to maximize total net income I. Violent

con�ict is therefore treated as a potential occupation with appropriable returns. I set aside other

types of objectives for engaging in intergroup con�ict, though these could be considered as also

generating indirect economic returns. Returns to all activities are a�ected by individual and loca-

tion characteristics X such as land quality, level of education, �ghting ability, and local economic

development.

Net returns to agricultural production FA(LA, S,W,X) are a�ected by adverse agricultural

shocks S, with ∂FA

∂S < 0 and ∂2FA

∂S2 < 0. A larger S, such as a drop in international crop prices or a

severe drought, therefore reduces the returns to agricultural labor�the opportunity cost mechanism:

producers have less to lose by engaging in con�ict. At the same time, lower agricultural prices or

output reduce the returns to predatory attacks: bandits or looters have less to gain from �ghting.

Dube and Vargas (2013) refer to this as the rapacity mechanism. These mechanisms are not unique

to agricultural shocks, as they are also discussed in earlier work on the economic drivers of con�ict

more generally (Collier and Hoe�er, 1998, 2004; Grossman, 1999).

Prior research models transitory agricultural shocks�which only directly a�ect returns to la-

bor in the period they occur�as having only temporary e�ects on con�ict, as there is no direct

persistent e�ect on agricultural productivity. The immediate shock income could have persistent

e�ects, however, as most agricultural households in developing countries lack insurance and have

constrained access to credit. Strategies to smooth consumption following an income shock, such as

selling animals and other assets, taking loans, reducing food, health, and education spending, and

sending members away reduce household physical and human capital (e.g., de Janvry et al., 2006;

Dercon and Hoddinott, 2004; Dinkelman, 2017). The resulting reductions in wealth mean transitory

shocks can have persistent impacts on productivity (Dercon, 2004; Donovan, 2021; Hallegatte et al.,

2020; Hoddinott, 2006; Karim and Noy, 2016). I therefore propose a wealth or permanent income

mechanism whereby a transitory negative shock indirectly but persistently reduces productivity
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through direct e�ects on productive assets, and a�ects con�ict risk by persistently reducing the

opportunity cost of �ghting.

I incorporate this into the model by making agricultural production depend on wealth W with
∂FA

∂W > 0, where wealth broadly includes human, physical, and �nancial capital. Wealth in period t is

weakly increasing in income I from activities in period t−1. As agricultural shocks decrease income,

this creates an indirect relationship between past agricultural shocks St−s and agricultural produc-

tion in period t, where s ∈ [1, τ ] for some τ . We can write FA
t = FA(LA

t , St,Wt({St−s}τs=1), Xt)),

with
∂FA

t
∂St−s

< 0 capturing the possibility of long-term e�ects of a transitory agricultural shock.

Net returns to non-agricultural work FN (LN , X,W ) are based on the most productive activity

available outside of own agricultural production, including migrating to work. The highest returns

available depends on individual and location characteristics X and wealth W . As a simplifying

assumption, I suppress the direct dependence of non-agricultural returns on S. Returns to non-

agricultural work thus set a lower bound on how far the opportunity cost of �ghting may fall

following a negative agricultural shock. With ∂FN

∂W > 0, FN will be weakly smaller for individuals

primarily engaged in agriculture that experienced a past agricultural shock due to the permanent

income mechanism.

Finally, an individual i can also decide to join in armed con�ict against targets J which may

include individuals, enterprises, or organizations of di�erent types including the government. These

targets may be within the same broadly-de�ned location as i or in neighboring locations, and may

experience the same or di�erent agricultural shocks. The aim of the violent con�ict may include

both capture of outputs (rapacity) or attempts to capture and control factors of production, such as

land or territory. I acknowledge that violent con�ict may have other direct objectives but to simplify

the model assume that all of these objectives can be represented as permitting more control over

resource �ows from production outputs or factors.

The potential net returns to �ghting are FC(LC
i , Xi,Wi{Ij ,Wj , Xj}j∈J). The costs of �ghting

depend on i's resources Wi and local context Xi, while the probability of successfully capturing

resources depends on these factors as well as characteristics of targets Xj . Costs of �ghting are

incurred with certainty and include economic, social, and emotional costs as well as risk of injury

or death. These costs make �ghting sub-optimal for most individuals in most time periods. An

important variable in Xi,t is whether there is preexisting mobilization against outside targets. In

practice, individuals are unlikely to engage in violent con�ict alone, as such �ghting generally

involves organized armed groups which recruit members and pay them a wage or share of the

returns from victory (Collier and Hoe�er, 2004; Grossman, 1999). Prior mobilization of groups

that could engage in armed con�ict will reduce the costs to the individual of �ghting, in multiple

dimensions (�nancial, social, psychological). Mobilized groups will likely also have or perceive a

greater likelihood of engaging in violent con�ict successfully.

Heterogeneity in the presence of mobilized groups is likely to be important in determining

e�ects of an agricultural shock. Buhaug et al. (2021) note that opportunity cost models can explain

economic motives for engaging in con�ict but not when these motives actually translate into action.
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Building on Collier and Hoe�er (2004), they propose a model of civil con�ict that predicts an

income shock to increase violence primarily in a context of collective grievances. In line with this

model, they �nd that drought shocks do not in general increase the risk of rebellion of a�ected ethnic

groups, but do increase this risk among marginalized ethnic groups more dependent on agriculture.

The assumption is that high levels of local grievances foster mobilization of groups against the

object of the grievances, and that these groups can at times resort to violent con�ict to achieve

their objectives. An agricultural shock itself may contribute to grievances by for example increasing

inequality, but many other factors unrelated to the shock also contribute to grievances, and I abstract

away from these underlying causes. Following this logic, I propose a grievance mechanism creating

variation in when an agricultural shock may increase the risk of con�ict by lowering the threshold

to which the opportunity cost of �ghting must fall to make switching to �ghting optimal.

The potential returns to �ghting depend on the incomes (production output), wealth (factors

of production), and characteristics of the individuals in J . With
∂FC

t
∂Sj,t

< 0, agricultural shocks

Sj for individuals j ∈ J decreasing the income available to capture and therefore reduce con�ict

risk through the rapacity mechanism. With
∂FC

t
∂Sj,t−s

< 0 (the permanent income mechanism), past

agricultural shocks to individuals j ∈ J will also reduce con�ict risk by decreasing both the output

and the factors that i can capture.

The individual's problem in period t can be presented as choosing their labor allocation Li,t

to maximize income Ii,t given some current and past shock realizations Si, Sj . For simplicity and

intuition I ignore uncertainty in returns and suppose that decisions are made (or equivalently,

updated) after the agricultural shocks in the period are realized.

max
LA
i,t,L

N
i,t,L

C
i,t

Ii,t =FA(LA
i,t, Si,t,Wi,t({Si,t−s}τs=1), Xi,t) + FN (LN

i,t,Wi,t({Si,t−s}τs=1), Xi,t)

+ FC(LC
i,t, Xi,t,Wi,t, {Ij,t,Wj,t({Sj,t−s}τs=1), Xj,t}j∈J)

subject to LO
i,t ∈ {0, 1}, FO(0, .) = 0, and

∑
O

LO
i,t = 1 for O ∈ {A,N,C}

∂FA

∂Si,t
< 0;

∂FA

∂Si,t−s
< 0;

∂FC

∂Sj,t
< 0;

∂FC

∂Sj,t−s
< 0

This yields

LC
i,t = 1 i� FC(1, Xi,t,Wi,t, {Ij,t,Wj,t({Sj,t−s}τs=1), Xj,t}j∈J)

≥ max(FA(1, Si,t,Wi,t({Si,t−s}τs=1), Xi,t), F
N (1,Wi,t({Si,t−s}τs=1), Xi,t))

In words: individual i chooses to engage in violent con�ict if the net returns from �ghting exceed

their opportunity cost�the highest net returns they could receive from choosing another occupation.

3.2 Testable hypotheses

In general, the e�ect of a negative agricultural shock on the decision to �ght is ambiguous, par-

ticularly if there is a strong positive correlation between shocks over space as in most agricultural
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shocks. At the same time as agricultural producers' opportunity cost of �ghting is reduced, the

decrease in local agricultural production makes con�ict over output (i.e., banditry) less attractive.

For transitory agricultural shocks which do not have a permanent direct e�ect on local agricultural

productivity, the value of factors of production�land in particular�should be less a�ected.9 In

line with this, the literature generally �nds that the opportunity cost mechanism dominates for

shocks that temporarily reduce agricultural returns, increasing con�ict risk, though the rapacity

cost mechanism is sometimes found to dominate for shocks that increase agricultural returns.

These considerations imply two testable predictions:

1. If the opportunity cost mechanism dominates, the local risk of violent con�ict should increase

immediately after shock exposure.

2. If the rapacity mechanism o�sets the opportunity cost mechanism, this should attenuate short-

term e�ects on measures of violent con�ict, with relatively more attenuation for immediate

con�ict over output than for con�ict over factors.

The long-term e�ects of past agricultural shocks Si,t−s on the decision to engage in con�ict in

period t also involve o�setting mechanisms. The permanent income e�ect persistently decreases

production, reducing both the long-term opportunity cost of �ghting and the returns to predatory

attacks. Results from literature on short-term e�ects of adverse agricultural production shocks

showing the opportunity cost mechanism typically dominates suggests that on net the permanent

income mechanism should increase long-term con�ict risk through its e�ects on the opportunity

cost of �ghting. Dynamic e�ects will depend on whether a�ected areas are able to recover over

time. Assuming the direct production shock is more severe than subsequent production decreases

under the permanent income mechanism, immediate e�ects should be larger than long-term e�ects,

all else equal.

Persistent e�ects through a permanent income mechanism should be more likely for more severe

shocks. Several papers have documented persistent e�ects of locust swarms on outcomes which could

in�uence productivity and therefore the opportunity cost of �ghting. Studies using the Demographic

and Health Surveys (DHS) show that young children exposed to locust swarms are more likely to

drop out of school (Asare et al., 2023) and achieve lower educational attainment (De Vreyer et

al., 2015), and also have lower height-for-age (Conte et al., 2023; Gantois et al., 2024; Le and

Nguyen, 2022; Linnros, 2017) when they are older. Such human capital e�ects of swarm exposure

could decrease permanent labor productivity. More directly, Marending and Tripodi (2022) �nd

that agricultural pro�ts of households in parts of Ethiopia exposed to locust swarms in 2014 are

20-48% lower two harvest seasons after swarm arrival. This indicates a persistent decrease in

agricultural productivity despite the fact the swarms have migrated and are no longer directly

a�ecting productivity. Long-term e�ects on productivity and wealth should be directly observable

if this is the mechanism through which a past shock a�ects current con�ict.

9Transitory shocks may have some e�ect on the returns to factors if they a�ect individuals' ability to productively
utilize factors or if they a�ect expectations about future productivity. Shocks that have direct permanent productivity
e�ects, for example through soil erosion or other land degradation, would have larger e�ects on the returns to factors.
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The model therefore suggests three more testable predictions for long-term impacts of a transi-

tory agricultural shock on con�ict risk:

3. If long-term opportunity cost e�ects under the permanent income mechanism dominate, we

should observe persistent increases in con�ict risk.

4. Assuming the initial direct production shock is more severe than the subsequent indirect e�ects

on production, increases in con�ict risk should be largest in the periods immediately after the

shock.

5. If the permanent income mechanism drives long-term e�ects on con�ict risk, we should observe

long-term average reductions in measures of productivity following the initial shock.

Since violent con�ict is not the norm in most locations and periods, it implies the returns are

generally low. While there is evidence that agricultural shocks cause the onset of new violent

con�ict immediately following the shock, it is not clear when a negative productivity shock will

lead an individual to switch from another activity to �ghting. The importance of local conditions

in determining the costs and returns of �ghting mean that we should expect heterogeneity in the

e�ects of an agricultural shock on con�ict risk. A reduction in the opportunity cost of �ghting is

more likely to increase the risk of violent con�ict when the costs of forming or joining armed groups

are lower or the returns to such engagement are higher. This implies that dynamic impacts of an

agricultural shock on con�ict risk should be greater in periods of heightened local grievances and

insecurity when groups are already mobilized around particular causes. Long-term e�ects under

this mechanism require persistent e�ects of the shock on measures of productivity or well-being.

This consideration motivates a �nal testable prediction:

6. If grievance is an important mechanism, the dynamic impacts of a transitory shock on violent

con�ict should be concentrated in periods of heightened grievance. As grievances can be hard

to measure, I consider measures of popular unrest or civil con�ict which indicate grievances

that have escalated to a high level.

4 Data

The Locust Watch database (FAO 2023) catalogs observations of desert locust swarms as well as

smaller concentrations of locusts from 1985 to 2021.10 I consider only data on locust swarms,

which pose the greatest threat to agriculture and whose �ight patterns create local variation in

exposure. The Locust Watch data include latitude, longitude, and date of swarm observations.

Locust observations are recorded by national locust control and monitoring o�cers on the ground,

but incorporate reports from agricultural extension agents, government o�cials, and other sources.

Local farmer scouts are also often trained in locust monitoring and reporting (Thomson and Miers,

2002).

10I last retrieved data from the Locust Watch database in 2023. As of Spring 2025, the data on desert locust
presence appear to no longer be publicly available.
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Data on con�ict events come from the Armed Con�ict Location & Event Data Project (ACLED)

database (Raleigh et al., 2010). The database records the location, date, actors, and nature of

con�ict events globally starting from 1997 by compiling and validating reports from traditional media

at di�erent levels, from institutions and organizations, from local partners in each country, and from

veri�ed new media sources. The database includes many types of events including protests, riots,

and various con�ict-related strategic developments, but I focus on events categorized by ACLED

as �violent con�ict�: battles, explosions, and violence against civilians.11 As an alternative con�ict

type, I follow McGuirk and Burke (2020) in constructing a measure of output con�ict (i.e., banditry)

using ACLED records of violence against civilians, rioting, and looting. Such smaller-scale output

con�ict aligns well with the modeling of violent con�ict as an occupational choice, and motivates

using ACLED as the main source of con�ict data.

For robustness, I also consider con�ict data from the Uppsala Con�ict Data Program (UCDP;

Sundberg and Melander, 2013). The UCDP database uses similar sources as ACLED but goes

back to 1989 and only records con�icts involving at least one �organized actor� and resulting in

at least 25 battle-related deaths in a calendar year. The ACLED database has no organized actor

or minimum death threshold requirements. The UCDP database has the advantage of being less

subject to underreporting bias: some research has shown that events with no fatalities�including

many of the types of ACLED violent con�ict events I consider�su�er from more underreporting

(Croicu and Eck, 2022; Eck, 2012). While UCDP captures a di�erent type of violent con�ict from

ACLED, it therefore presents a useful check of the results.

I collapse these point event data to a raster grid with annual observations for cells with a

0.25◦ resolution (15 arcminutes, approximately 28×28km). Analyzing impacts at this spatial level

reduces potential measurement error about the speci�c areas a�ected by swarm and con�ict events

and allows me to leverage local variation in swarm presence created by their �ight patterns. The

median swarm covers around 50 km2, so nearly all swarms will be contained within 0.25◦ cells (∼784
km2), except those near cell boundaries. I test for robustness to analyzing data at the level of 0.5◦

and 1◦ cells, which will also capture potential spillovers from swarm exposure. In each cell and year

I measure whether any locust swarm and con�ict event is recorded. I do not account for variation

in the counts of swarm or con�ict events as the individual events are not themselves of consistent

magnitudes. To test for spatial spillovers, I also measure whether any swarms are observed within

100 km outside of each cell-year.

I determine the country and highest sub-national administrative unit in which each cell centroid

lies using country boundaries from the Global Administrative Areas (2021) database v3.6. I use

sub-national administrative boundaries to create a set of 285 regions, all of which include at least

32 individual grid cells except for small countries with fewer than 32 cells. These regions are either

11I provide examples of each from 2012 in Mali. Battle: On August 22 in Ansongo, MUJAO �ghters and Military
forces from Niger clashed close to the town of Tessit, with four MUJAO �ghters killed. Explosion: On August 15
in Ansongo, anti-personnel mines planted by MUJAO exploded and killed two people. Violence against civilians:
On July 26 in Timbuktu, a shepherd was killed after resisting an attempt by Ansar Dine �ghters to steal one of his
animals.
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existing sub-national administrative units or combinations of adjacent units within the same country.

I cluster standard errors at the level of these regions.

Given the role of weather in desert locust biology, its importance in determining agricultural

production, and the well-documented relationship between weather shocks and con�ict, all analyses

control for local weather to isolate the impact of locust swarm exposure. I measure total annual

precipitation (in mm) and maximum temperature (in ◦C) using high-resolution monthly data from

WorldClim available through 2018.12 I measure drought exposure using monthly Standardized Pre-

cipitation and Evapotranspiration Index (SPEI) data from the Global Drought Monitor (Begueria

et al., 2014). My primary de�nition of drought at the annual level is at least 4 consecutive months

in a year where the SPEI in a cell is below -1.5, indicating signi�cantly drier conditions relative to

local historical norms (values from -1 to 1 indicate near-normal within-cell conditions).

I also incorporate raster population data for every 5 years from CIESIN, 2018, linearly inter-

polating within cells between years where the population is estimated, and raster data on land

cover in 2000 from CIESIN, giving the share of land cover in each cell that is cropland and pasture

(Ramankutty et al., 2010). I combine the land cover data with cropland mapping of Africa from

2003-2014 (Xiong et al., 2017) to identify cells with any cropland during the study period. I include

additional cell characteristics, such as the start and end month of the main agricultural season,

from the PRIO-GRID dataset (Tollefsen et al., 2012), assigning all 0.25◦ cells the values for the 0.5◦

PRIO-GRID cell in which they are located.

For the analysis of mechanisms, I incorporate data on agricultural production, economic activity,

and net migration. Household-level estimates of agricultural production come from the Advancing

Research on Nutrition and Agriculture (AReNA) Demographic and Health Surveys (DHS) GIS

database (IFPRI 2020), which includes geolocated data at the level of household survey clusters for

40 surveys from 9 countries in the study sample conducted between 1992 and 2018.I incorporate two

satellite-based measures of agricultural productivity: the Normalized Di�erence Vegetation Index

(NDVI) and estimates of major crop yields. I calculate the NDVI�a commonly-used satellite-based

measure of vegetation greenness at a given point and time�using 16-day 1km satellite imagery from

MODIS (Didan, 2015) for the period 2000-2019, taking the maximum of monthly means in each

grid cell to construct an annual value. In crop land, NDVI can be considered a rough proxy for

agricultural production. Global annual yield data for four major crops�maize, rice, wheat, and

soybean�at the 5 arcminute resolution for 1982-2015 come from Cao et al. (2025). Most cells only

include data for one of the four crops, but for cells with multiple crops in the dataset I de�ne the

`main' crop as the crop with the highest yield. Finally, net migration at the 5 arcminute resolution

for 2000-2019 come from Niva et al. (2023), who estimate net migration based on subnational annual

data on population, births, and deaths.

12CRU-TS 4.03 (Harris et al., 2014) downscaled with WorldClim 2.1 (Fick and Hijmans, 2017). I test sensitivity to
measuring rainfall using CHIRPS (Funk et al., 2015) and temperature using ERA5 (Hersbach et al., 2019) to account
for satellite-based weather measurement error (Josephson et al., 2024).
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4.1 Sample and summary statistics

Since ACLED records con�icts beginning in 1997 and the main weather data are available until 2018,

the analysis sample includes observations from 1997 to 2018. I restrict the analysis to countries with

at least 10 locust swarm observations in this period. The resulting analysis sample covers 22 years

across 25,435 cells, for a total of 557,018 observations with data on all main estimation variables.

Figure 2 visualizes swarm exposure, violent con�ict incidence, and agricultural land cover for the

sample countries. Summary stats are included in Table A1.

Figure 2: Swarm exposure, violent con�ict incidence, and land cover in sample countries
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Note: Panel A presents the �rst year after 1989 in which a locust swarm is observed in a given cell, using FAO Locust Watch
data. This de�nes the swarm exposure year. Panel B shows all cells where any locust swarm was ever observed within 100
km of the cell centroid from 1996-2021. Panel C shows the count of years for each cell in which any violent con�ict event was
recorded in the ACLED database, from 1997-2018. Panel D presents `baseline' land cover data for the year 2000 from CIESIN.
Land used for agriculture includes crop land and pasture land. T

Locust swarms are relatively rare events, with swarms reported in less than one percent of cell-

years (Table A1 Panel A). But at least one locust swarm is recorded in 9% of cells in the study

period of 1997-2018 and 55% are within 100 km of any locust swarm report (Figure 2 Panel B).

To account for the possibility of persistent e�ects of swarm exposure, I identify for each cell the

�rst year after 1989 in which a locust swarm is recorded (Figure 2 Panel A), and de�ne a cell as

exposed to a locust swarm in each following year and not exposed in all other years or if no locust

swarm is ever observed. Cells �rst exposed to a swarm before 1997 (in dark blue in Figure 2 Panel

A) are considered treated during the entire sample period and therefore do not inform the analyses,

while cells �rst exposed to a swarm after 2018 (in red) are considered not treated during the sample

period. Just over seven percent of cells are �rst exposed to a swarm during the sample period,

including 5.3% exposed during the 2003-2005 upsurge (in teal).

Violent con�ict is also uncommon, with events reported in two percent of cell-years (Table A1

Panel A). Con�ict is temporally correlated (Figure 2 Panel C), with 13% of cells experiencing at
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least one violent con�ict event during the study period, in 3.4 di�erent years on average (Table A1

Panel B). The risk of any violent con�ict is fairly low from 1997-2010 before increasing signi�cantly

over the remainder of the sample period (Figure 5 Panel A). The increase corresponds with the

timing of the Arab Spring movements, the spread of Islamic militant groups, and multiple civil wars

and separatist movements in the sample countries.

Over half the cells (57%) in the sample have agricultural land: 56% have pasture land while 31%

have crop land. Across all cells, the mean share of land allocated to agriculture is 23% (Figure 2

Panel D, Table A1 Panel B), with 18% pasture land and 5% crop land. Given that locust swarms

should a�ect outcomes through agricultural destruction, I test for heterogeneity in impacts by land

cover.

4.2 Locust swarm monitoring

The Locust Watch database likely does not include all locations of swarm exposure events over time

due to monitoring capacity limitations. Randomly missing swarm events�classical measurement

error�would attenuate estimated e�ects, but swarm monitoring is likely correlated with character-

istics that might also be correlated with con�ict risk, such as agricultural activity and population

levels. For example, Gantois et al. (2024) �nd heterogeneity in locust reporting across country bor-

ders, indicating di�erences in country monitoring capacities. Unreported swarms are an important

challenge for studies using household survey data that must de�ne exposure at the level of speci�c

community coordinates, and studies such as Gantois et al. (2024) and Marending and Tripodi (2022)

take di�erent approaches to deal with this concern. An advantage of de�ning swarm exposure as

an annual dummy variable at the level of grid cells is that only one swarm needs to be reported in

a relatively large area to de�ne the cell as exposed. But di�erences in cell-level monitoring e�ort

may still lead to biased estimates.

The main empirical speci�cation accounts for this in two ways. First, I restrict the sample to

only cells where a locust swarm was ever reported within 100 km. This drops cells with no real

risk of swarm exposure as well as cells far from any monitoring activity. Second, in all regressions

I control for population and weather variables which are likely to be strongly correlated with both

con�ict risk and monitoring intensity. Cell �xed e�ects also control for �xed characteristics which

may a�ect monitoring and the risk of locust exposure, such as elevation, distance from breeding

areas, and being within typical swarm migratory paths. Country-by-year �xed a�ects control for

average di�erences in state monitoring capacity.

In addition, I conduct several types of robustness checks to test whether issues in locust mon-

itoring may a�ect the estimated e�ects on con�ict risk. First, I estimate the propensity for a cell

to have been exposed to a swarm during the study period, which accounts for di�erences in both

swarm risk and monitoring, and test the sensitivity of results to controlling for propensity-by-year

�xed e�ects. Second, I aggregate the analysis to the level of larger cells, which reduces the risk

that individual unreported swarms may a�ect the analysis as such swarms are more likely to be co-

located with other swarms that are reported in larger cells. Third, I systematically exclude di�erent
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regions from the sample to check whether results are driven by areas with particular con�ict and

locust monitoring conditions. Fourth, I conduct simulations randomly imputing `missing' locust

swarms across all cells near the locations of reported swarms, to see how di�erent levels of potential

swarm underreporting would a�ect the results.

A speci�c concern might be that locust reporting is correlated with violent con�ict. This concern

is the focus of Torngren Wartin (2018)'s analysis of the impact of locusts on con�ict, which uses

similar data but focuses on the short-term, modeling locusts as temporary shocks. Showler and

Lecoq (2021)�which I refer to as `SL2021' in analyses below�review how insecurity has a�ected

national and international desert locust control operations from 1985-2020 across countries where

locusts are active. They mention Chad, Mali, Somalia, Sudan, Western Sahara, and Yemen as

countries with areas where insecurity has constrained locust control operations in certain periods

since 1997.

Insecurity is likely less of a constraint for locust monitoring than for control operations. FAO

locust monitoring guidelines discuss conducting aerial surveys and using reports from local scouts,

agricultural extension agents, security forces, and other sources (Cressman, 2001), which would

allow reporting even in insecure areas. Gantois et al. (2024) �nd that contemporaneous con�ict

reduces the probability of any locust monitoring by 11.7%, but generally no signi�cant e�ect on

locust swarm reporting. This may re�ect greater importance or resources for swarm monitoring,

or better-established methods for collecting reports of swarms from disparate sources. The Locust

Watch data includes observations of locust swarms even in countries and periods where SL2021

indicate control operations have not been possible. The share of cells within 50 km of a locust

swarm observation in a given year that have reports of a locust swarm within the cell is around

25% in both the set of countries SL2021 indicate pose challenges for locust control and all other

countries, and these swarm reports are much more likely to coincide with violent con�ict events in

the SL2021 countries suggesting this violence is not unduly deterring locust monitoring.

Missing swarm observations in high-con�ict areas would bias my estimates downward by in-

cluding in the control group areas exposed to locusts with likely higher future levels of con�ict, as

con�ict risk is serially correlated. I test the sensitivity of the results to excluding the countries listed

in SL2021 as potential locations of locust swarm under-reporting, and to systematically excluding

di�erent regions from the sample to check whether results are driven by areas with particular con�ict

and locust monitoring conditions. In addition, I conduct simulations randomly imputing `missing'

locust swarms particularly in cells experiencing con�ict near the locations of reported swarms to

test e�ects of potential underreporting in these areas.

5 Empirical approach

I use a di�erence-in-di�erences approach to estimate the causal impacts of locust swarm exposure

on violent con�ict. I consider swarm exposure to be an absorbing treatment to allow for long-term

e�ects of this transitory agricultural shock. Cells are de�ned as exposed to a locust swarm in all
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years starting from the �rst year a swarm is observed in a cell (starting in 1990), and not exposed

before or if no locust swarm is ever observed.

I estimate both static average impacts and dynamic impacts over time using the Borusyak et al.

(2024) imputation estimator (BJS). I also consider alternative estimators including Callaway and

Sant'Anna (2021), Cengiz et al. (2019), De Chaisemartin and d'Haultfoeuille (2024), and Sun and

Abraham (2021) and a standard two-way �xed e�ects (TWFE) speci�cation, and �nd similar results.

The estimators mainly di�er in how they estimate pre-trends. BJS impute counterfactual untreated

outcomes for all units and make comparisons against the average over all pre-treatment periods,

leading to smoother pre-treatment dynamics (Roth et al., 2023). This imputation approach deals

with concerns with TWFE estimators when there is heterogeneity in treatment e�ects by time since

treatment or across treatment cohorts, which can lead to `forbidden' comparisons between late-

and early-treated groups and negative weighting of e�ects for certain treatment groups or periods

(Goodman-Bacon, 2021).

I present a standard TWFE estimation model to build intuition on the setup and the source of

identifying variation in the analysis, as this is the same with the BJS estimator. The static average

impact TWFE linear probability model takes the form:

Yict = α+ βExposedict + δXict + γct + µi + ϵict (1)

where i indexes cells, c countries, and t years. The outcome Y in the primary speci�cations is

a dummy variable for observing any violent con�ict event in the cell during a given year in the

ACLED database. Analyzing con�ict as a binary variable at an annual level reduces potential

measurement error and is the main approach in the climate and con�ict literature. I consider e�ects

on other outcomes in tests of the impact mechanisms. Exposed is an absorbing dummy variable

for having been exposed to a locust swarm, . switching from 0 to 1 in the year of exposure and

for all subsequent years. Cells that are never exposed in the sample period have a value of 0 for

all years, and cells �rst exposed beforehand have a value of 1 for all years. The dynamic version

of the analysis includes 10 years of both lags and leads of the indicator for the onset of treatment.

I choose 10 years to account for the fact that the analysis sample focuses on the period 1997-2018

and just under three-quarters of swarm exposure in this period takes place in 2004-2005. I test the

robustness to considering di�erent numbers of lags and leads.

Cell �xed e�ects µi control for time-invariant cell characteristics (over the sample period) which

might a�ect both the likelihood of swarm exposure and of experiencing violent con�ict. Country-

by-year �xed e�ects γct �exibly control for country-level variation over time in the intensity of locust

swarms and violent con�ict. Xict is a vector of time-varying controls at the cell level to account

for locally-varying conditions which may a�ect both swarm exposure and the risk of con�ict. The

main speci�cations include annual cell total precipitation, maximum temperature, and population.

Impacts of swarm exposure are therefore estimated using di�erences within cells in variation over

time in violent con�ict, between cells in the same country and with the same precipitation, tem-

perature, and population but with di�erent exposure to locust swarms. Standard errors (SEs) are
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clustered at the sub-national region level (285 clusters) to allow for correlation in the errors within

nearby areas over time.13

The BJS estimator follows a similar setup and includes the same �xed e�ects and controls,

so leverages the same identifying variation. The process of the estimation is di�erent, however,

proceeding in three general steps (Borusyak et al., 2024, p. 3255). First, the estimator �ts α̂, µ̂i,

γ̂ct, and δ̂ using only untreated observations. Next, these �tted values are used to impute untreated

potential outcomes for treated cells post-exposure. These imputed outcomes are subtracted from

actual outcomes to estimate treatment e�ects. Then, the estimator takes an average of treatment

e�ect, either on average for the static impact estimate or by period relative to treatment for the

dynamic estimate. Because the time �xed e�ects are estimated using only data from untreated

observations, the γ̂ct are implicitly weighted toward periods with more untreated units, but otherwise

the averages are calculated using equal weighting across treatment cohorts (by year of exposure). In

this study the untreated groups are quite large, so the implicit weighting should be fairly uniform.

The identi�cation strategy relies on quasi-random variation in which areas in the migratory path

of locust swarms during a given outbreak are actually exposed to locust destruction, due to swarm

�ight patterns. The key identifying assumption of the econometric design is that trends in con�ict

risk would be parallel over time in exposed and unexposed areas within the same country in the

absence of locust swarm exposure, after controlling for e�ects of weather and population.

The key threat to the assumption is if locust swarms are more likely to a�ect areas with di�erent

propensity to experience con�ict. The literature on locust biology suggests that�conditional on

swarms forming in breeding areas and then beginning to migrate�where swarms land is driven by

wind direction and time of day rather than land cover or particular types of vegetation. This implies

quasi-randomness in exposure within swarm migratory paths. But selection in locust reporting,

discussed in subsection 4.2, could lead to a violation of the parallel trends assumption by leading

to di�erences in where swarms are observed.

While the parallel trends assumption is not possible to test directly, I explore its plausibility in

two main ways: testing for balance in baseline or �xed cell characteristics and testing for parallel

trends in outcomes prior to exposure. I discuss balance in cell characteristics here and discuss

pre-trends when presenting the main event study results. Cells exposed to a locust swarm during

the sample period have di�erent baseline characteristics than unexposed cells which are largely

consistent with desert locusts rarely being observed in the interior of the Sahara desert (as shown in

Figure 2). Exposed cells have larger populations, are closer to capital cities, have a greater share of

pasture land and smaller share of barren land, and have lower maximum temperatures (Table A2).

These di�erences are smaller and lose some statistical signi�cance when restricting the sample to

cells within 100 km of any locust swarm from 1997-2021, a proxy for being in potential swarm

13Patterns of statistical signi�cance are largely unchanged when using two-way clustered errors at the year and
region level and using Conley (1999) Heteroskedasticity and Autocorrelation-Consistent (HAC) SEs allowing for
spatial correlation over 100 and 500 km and serial correlation over 0 or 10 time periods, following Hsiang (2010)'s
approach (Figure B3). Clustering at the sub-national region level consistently leads to SEs at least as large as Conley
SEs allowing for spatial correlation within 500 km and serial correlation over 10 years, implying the main SEs I report
are conservative and may understate statistical signi�cance of certain estimates.
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migratory paths (a joint test of di�erences in cell characteristics yields F = 2.38 and p < 0.01).

These patterns appear more consistent with selection in locust swarm reporting than vegetation-

driven selection in where swarms land, particularly as there is no di�erence in the share of cell crop

land by exposure status.

One approach to account for imbalance in covariates is to weight observations by the conditional

probability of being treated (Abadie, 2005; A. Baker et al., 2025; Stuart et al., 2014). I estimate the

propensity of any locust swarm exposure during the study period as a function of �xed cell char-

acteristics including land cover and population in 2000, distances to the capital and to a national

boundary, mean weather realizations over the study period, and country �xed e�ects. I �rst use a

lasso regression to select parameters and then estimate exposure propensity using a logit regression.

I use the results to construct inverse propensity weights as 1
p for cells that were exposed and 1

1−p

for cells that were not, where p is the estimated probability of swarm exposure. I assign cells with

estimated probabilities outside the range of common support a weight of 0. Restricting to cells in

likely migratory paths and including these weights largely eliminates di�erences in baseline charac-

teristics (F = 0.64 and p = 0.824 for the joint test of di�erences; Table A2). The Borusyak and

Hull (2023) approach to dealing with non-random exposure to exogenous shocks involves adjusting

for average treatment across shock counterfactuals�this has been used in the case of locust swarms

by Marending and Tripodi (2022). I draw on this by testing the robustness of the results to control-

ling for swarm exposure propensity-by-year �xed e�ects, which would account for potential di�erent

trends in areas with high exposure propensities, treating this as a proxy for average treatment under

di�erent shock realizations.

Baseline di�erences by swarm exposure status are not a concern if they do not a�ect con�ict risk

or only a�ect levels of con�ict, but it is plausible that some of the di�erences would a�ect con�ict

trends. However, the controls in the empirical speci�cations should absorb most of these di�erences.

Cell �xed e�ects control for time invariant cell characteristics that might a�ect the risk of con�ict

such as distance to major cities or country boundaries, topography, and agricultural suitability, but

also distance from locust breeding areas. Country-by-year �xed e�ects �exibly control for factors

varying over time at the country level that might a�ect con�ict risk, such as food price shocks,

weather patterns, the policy environment and national economic and social conditions. Importantly,

they control for trends in violent con�ict incidence, which increases over the sample period. I also

directly include in the regressions time-varying characteristics that di�er between exposed and

unexposed cells and may a�ect locust reporting and con�ict risk�population and temperature�as

well as annual precipitation. I control for baseline di�erences in distance to the capital by de�ning all

cells as either below or above the median distance to the capital within each country, and including

capital distance by year �xed e�ects in the regressions to account for potential di�erential trends

in con�ict risk over time by proximity to country capitals. Finally, the main analyses restrict the

sample to cells within 100 km of any locust swarm from 1997-2021 (illustrated in Figure 2 Panel

B) and within the range of common support of the estimated propensity of swarm exposure across

exposed and unexposed cells. This e�ectively restricts the sample to areas within swarm migratory
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paths during recent outbreaks, where exposure is most likely to be quasi-random.

Another identi�cation assumption relevant to event study designs with staggered treatment tim-

ing is the no anticipation assumption: knowledge of future treatment timing does not a�ect current

outcomes (Roth et al., 2023). Populations may expect a higher probability of swarm exposure

in years of major upsurges but cannot perfectly anticipate timing of exposure. For example, the

FAO Desert Locust Watch publishes monthly forecasts of areas predicted to be at risk of locust

swarm exposure but the predictions include a great deal of uncertainty due to unpredictable minor

variations in swarm �ight patterns. Consequently, areas forecast to be at risk are generally quite

large, the majority of which end up not being a�ected by locusts.14 Anticipation may also have

limited e�ects as there are no e�ective methods of defending vegetation against locust swarms, and

farmers in at-risk areas typically describe locust prevention and control as out of their hands and

the responsibility of governments (Thomson and Miers, 2002).

Finally, the empirical speci�cation assumes no e�ects of locust swarm exposure outside of the

exposed cells. In the robustness checks, I �rst test the sensitivity of the results to conducting the

analysis in larger grid cells, to increase the likelihood that any e�ects are contained within exposed

cells. I then relax this assumption by including an absorbing treatment indicator for being within

100 km of a locust swarm during the study period, de�ned similarly as the within-cell exposure

variable.

6 Results

Figure 3 presents event study estimates of the impact of desert locust swarm exposure on violent

con�ict at the cell-year level using the Borusyak et al. (2024) imputation estimator (BJS). The

average pre-exposure di�erence is -0.003 but is not signi�cantly di�erent from 0, with 5 positive

coe�cients and 5 negative coe�cients. Only one pre-exposure coe�cient is larger than 0.007 in

magnitude or statistically signi�cant: on average violent con�ict is 2.4 percentage points (pp) less

likely in areas exposed to locust swarms compared to unexposed areas 9 years before exposure.

Because of this one highly signi�cant di�erence I reject that pre-exposure di�erences are jointly

equal to 0 (p = 0.002), but I fail to reject that the 9 other pre-exposure coe�cients are jointly

equal to 0 (p = 0.230). I �nd similar patterns and also fail to reject that pre-exposure coe�cients

are jointly equal to 0 if I include only 6 pre-exposure periods (Figure B2 panel A). Together,

these results indicate similar probability of violent con�ict by swarm exposure in the pre-exposure

periods. Though this does not preclude the possibility that trends would di�er in the years after

swarm exposure for reasons unrelated to agricultural destruction, it is an encouraging sign that the

parallel trends assumption likely holds.

In contrast with the pre-exposure coe�cients, 8 of 11 treatment coe�cients are statistically

signi�cant at a 95% con�dence level. The average e�ect is a 1.4pp increase in the annual risk of any

violent con�ict event. All coe�cients are positive and all but the three non-signi�cant coe�cients

14I �nd that monthly forecasts of at-risk areas during the major upsurge in 2004 covered on average 40.6% of 0.25◦

cells in sample countries, but nearly one-quarter of swarms in this period were recorded outside of these areas.
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Figure 3: Impacts of exposure to locust swarms on violent con�ict risk over time
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Note: The dependent variable is a dummy for any violent con�ict event in a cell-year. Estimated impacts in each time period
are weighted averages across e�ects for swarm exposure in particular years, calculated using the BJS estimator. Time period
0 is the year of �rst swarm exposure. Brackets represent 95% con�dence intervals using SEs clustered at the sub-national
region level. All regressions include country-by-year and cell �xed e�ects and controls for annual precipitation, maximum
temperature, and population, and distance to capital by year �xed e�ects. Observations are grid cells approximately 28×28km
by year. Coe�cient estimates are shown in Table A3 column 1. At the top left and right I show averages of pre- and
post-exposure coe�cients. On the bottom left I show the results of a joint test that the pre-exposure coe�cients equal 0. A
joint test omitting the period 9 years before exposure yields p = 0.230.

are larger than 0.007 in magnitude, the largest pre-exposure magnitude outside of the period 9 years

before exposure.

Despite the large average long-term e�ects, the point estimate for the e�ect on violent con�ict

risk in the year of exposure is a fairly precise 0. This contrasts with much of the literature on climate

and con�ict which focuses on short-term e�ects. These studies generally �nd signi�cant concurrent

increases in con�ict risk, though Crost et al. (2018) and Harari and La Ferrara (2018) also �nd that

growing season weather shocks have delayed e�ects on con�ict. Estimated treatment e�ects are

positive but not signi�cant in period 1 after exposure but then signi�cant and generally increasing

until another null e�ect 6 years after exposure. The most striking result is that the largest e�ects of

exposure on violent con�ict risk are realized starting 7 years post-exposure: coe�cients for periods

7-10 are all larger than 0.021. While the standard errors for these coe�cients are larger they are all

signi�cant at a 99% con�dence level. I explore reasons for this pattern of dynamic impacts in the

Mechanisms section.

I estimate event study e�ects using several alternative staggered di�erence-in-di�erences esti-

mators (Callaway and Sant'Anna, 2021; Cengiz et al., 2019; De Chaisemartin and d'Haultfoeuille,

2024; Sun and Abraham, 2021) and �nd nearly identical dynamic treatment e�ects (Figure B1) and

average long-term e�ects (Table B1). There is some variation in estimated pre-exposure di�erences,
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which is expected as a key di�erence across these estimators is how pre-exposure e�ects are calcu-

lated. Pre-exposure standard errors are generally larger in the main Borusyak et al. (2024) method

because comparisons are made against averages over the full pre-treatment period and there are not

10 years of pre-exposure data for most treated cells. The Callaway and Sant'Anna (2021) �nds more

signi�cant pre-exposure di�erences, but these alternate between positive as negative likely because

this method makes comparisons between adjacent periods, suggesting no clear pre-exposure pattern

in violent con�ict risk. The other estimators each �nd limited signi�cant (negative) pre-exposure

di�erences as in the BJS method.

6.1 Average impacts of swarm exposure on violent con�ict

Figure 3 shows that on average across 11 exposure and post-exposure periods, swarm exposure

increases the annual risk of any violent con�ict event by 1.4pp. Table 1 column 1 shows estimated

average long-term impacts across all exposure and post-exposure periods. On average cells exposed

to locust swarms are 1.8pp more likely to experience any violent con�ict in a given year in the

period after swarm exposure than cells not exposed. This represents a 64% increase over the mean

for non-exposed cells after 2004, the main year of swarm exposure. The larger average long-term

impact in Table 1 column 1 than in Figure 3 indicates that the larger magnitude e�ects on violent

con�ict persist more than 10 years after swarm exposure, and I show this when including 14 years

of post-exposure e�ects in Figure B2 Panel B.

The average long-term impact of swarm exposure is large compared to the same-year e�ects

of weather �uctuations. A 1 SD increase in annual precipitation increases the probability of any

violent con�ict in the same year by 0.4pp (14%) compared to 1.2pp (43%) for a 1 SD increase in the

maximum annual temperature. The e�ect of temperature is in the upper end of the distribution

of estimates of the impacts of climate on intergroup con�ict in Burke et al. (2024)'s meta-analysis,

potentially because of the use of maximum temperature and the time period studied. Cell population

is also positively associated with con�ict risk, with an increase of 10,000 people associated with a

1.0pp (36%) increase in the probability of any violent con�ict event in a year.

If estimated e�ects are capturing causal e�ects of swarm exposure we should expect hetero-

geneity by land cover since swarm exposure should primarily impact outcomes through agricultural

destruction (Table 1 columns 2 and 3). Swarm exposure in non-agricultural cells (23% of the anal-

ysis sample) has no signi�cant e�ect while in agricultural cells annual violent con�ict risk increases

by 1.9pp, though I cannot clearly reject that the e�ects are the same (p = 0.109). Locust swarms

increase annual violent con�ict risk by 2.3pp in crop cells (57% of the sample) compared to no

signi�cant e�ect in non-crop cells (46% of which have pasture land), and here the di�erence is

statistically signi�cant (p = 0.025). These di�erences are consistent with locust swarms a�ecting

con�ict risk through initial agricultural destruction.

I �nd similar average long-term e�ects of swarm exposure estimated using TWFE as presented

in Equation 1 (Table B2). The average long-term impact with this estimator is a 2.0pp increase,

slightly larger than the main BJS estimate. This suggests limited bias in the TWFE estimates from
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Table 1: Average impacts of exposure to locust swarms on violent con�ict risk by land cover

Outcome: Any violent con�ict event (1) (2) (3)

All land

Land =
Any crop or
pasture land

Land =
Any crop land

Average e�ect of swarm 0.018∗∗∗

exposure (0.004)

Total annual precipitation 0.004∗∗ 0.004∗∗ 0.004∗∗

(SDs) (0.002) (0.002) (0.002)

Max annual temperature (SDs) 0.012∗∗ 0.012∗∗ 0.012∗∗

(0.005) (0.005) (0.005)

Population (10,000s) 0.010∗∗∗ 0.010∗∗∗ 0.010∗∗∗

(0.002) (0.002) (0.002)

E�ect of exposure, Land=0 0.006 0.007
(0.006) (0.004)

E�ect of exposure, Land=1 0.019∗∗∗ 0.023∗∗∗

(0.005) (0.006)

Observations 301664 301664 301664
p-value, equality of e�ect by land cover .109 .025
Outcome mean post-2004, no exposure 0.028 0.028 0.028
Country-Year FE Yes Yes Yes
Cell FE Yes Yes Yes
Controls Yes Yes Yes

Note: The table presents results from three separate regressions of average long-term impacts of locust swarm exposure on the
probability of any violent con�ict event in a cell-year using the BJS estimator. In columns 2 and 3 I estimate heterogeneous
e�ects by land cover in 2000, considering whether there is any crop or pasture land and any crop land, respectively. The
`Land=0' row shows the estimated average long-term e�ects in cells with no such land cover while the `Land=1' row shows
the impact in cells with such land cover. At the bottom of the table I include p-values for the test of equality of these two
coe�cients. The outcome mean for control cells is shown for post-2004 for comparison with exposure impacts in the period
after the majority of swarm exposure occurred. All regressions include country-by-year and cell �xed e�ects and controls for
annual precipitation, maximum temperature, and population, and distance to capital by year �xed e�ects. Observations are
grid cells approximately 28×28km by year. SEs are clustered at the sub-national region level.
* p < 0.1, ** p < 0.05, *** p < 0.01

staggered timing of swarm exposure, potentially because close to three-quarters of exposure occurred

in the same period in 2003-2005. I �nd slightly larger di�erences in average long-term e�ects of

swarm exposure by land cover, and the di�erence by any agricultural land becomes statistically

signi�cant at a 95% con�dence level. The TWFE regressions also allow me to test heterogeneity

in e�ects of precipitation, temperature, and population (Table B2 columns 2 and 3), which is

not possible with the Stata package implementing the BJS estimator. E�ects of precipitation are

marginally signi�cantly larger in cells with any crop land but remain signi�cant in non-agricultural

cells. E�ects of temperature do not vary by land cover. These results echo previous work questioning

whether agricultural mechanisms explain the relationship between climate and con�ict (Bollfrass

and Shaver, 2015; Sarsons, 2015). The association between population and con�ict risk does not

vary signi�cantly with land cover. The estimated e�ect in non-agricultural cells is very large but

there is little identifying variation driving this estimate.

To further test that impacts of locust swarms are driven by initial impacts on agricultural

production, I consider heterogeneity in impacts by both land cover and by timing of swarm exposure

relative to local crop calendars. I categorize swarms as arriving during particular stages of the crop

production cycle by matching the month in which a swarm is observed to crop calendar information

from the PRIO-GRID dataset, �lling in missing data with country-level crop calendars from The

United States Department of Agriculture (USDA) (2022).The o� season�between harvesting and
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planting�lasts between 3 and 6 months in most of the sample cells, with an average of slightly

over 4 months. I distinguish between swarms arriving during the o� season and planting season

(�rst two months of the main agricultural season) when they are unlikely to signi�cantly damage

crop production, and swarms arriving in the growing and harvesting season when potential damages

should be greatest. Figure A1 presents the timing of locust swarms by region across the sample

period. Swarms in cells with crop land are more frequently observed during the growing/harvest

season, likely because locust breeding primarily occurs during wetter months which tend to overlap

with the planting period and swarm migration out of breeding areas follows in subsequent months.

As with the main analysis, I use the �rst year a cell was exposed to a locust swarm during a

particular season to construct an absorbing treatment variable. I then estimate Equation 1 with the

two seasonal swarm exposure treatments using TWFE and fully interact all variables with dummies

for any agricultural or crop land cover. Table 2 column 1 shows that e�ects on violent con�ict

risk are driven by exposure to locusts swarms during the growing or harvest season in cells with

any agricultural land, where exposure increases average annual risk of any violent con�ict event by

2.6pp. There are no signi�cant e�ects of swarm exposure in other seasons or non-agricultural cells.

The patterns are similar when considered di�erences by any crop land in particular (column 2).

Table 2: Impacts of swarm exposure by land cover and swarm timing

Outcome: Any violent con�ict event (1) (2)
Land =

Any crop or
pasture land

Land =
Any crop land

O�/planting season, Land=0 -0.001 0.001
(0.005) (0.006)

O�/planting season, Land=1 0.007 0.009
(0.006) (0.007)

Grow/harvest season, Land=0 0.007 0.012
(0.011) (0.007)

Grow/harvest season, Land=1 0.026∗∗∗ 0.028∗∗∗

(0.007) (0.008)

Observations 301664 301664
Outcome mean post-2004, no exposure 0.028 0.028
p, o�/plant season non-crop=crop e�ect 0.321 0.288
p, grow/harvest season non-crop=crop e�ect 0.161 0.127
p, non-crop o�/plant=grow/harvest e�ect 0.536 0.254
p, crop o�/plant=grow/harvest e�ect 0.059 0.087
Country-Year FE Yes Yes
Cell FE Yes Yes
Controls Yes Yes

Note: The table presents results from a single regression interacting two seasonal swarm exposure treatment variables with a
dummy for crop land cover with the same �xed e�ects and controls as in Equation 1. The coe�cients and standard errors are
calculated using Stata's xlincom command based on the sums of the coe�cients for the non-crop seasonal e�ects and the crop
interaction terms. Observations are grid cells approximately 28×28km by year. SEs are clustered at the sub-national region
level.
* p < 0.1, ** p < 0.05, *** p < 0.01

For both land cover types (any agricultural land and any crop land speci�cally), I can reject

equality of e�ects of swarm exposure in cells with such land cover by whether the exposure occurred

in the o�/planting seasons compared to the growing/harvest seasons (p = 0.059 and p = 0.087,

respectively for the two land cover dummies). Positive point estimates for e�ects of o�/planting

season swarms in such cells indicates that in some cases there are impacts of swarm exposure

through destruction of vegetation even outside of peak crop production periods. This could include
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destruction of pasture, of perennial crops such as tree crops, and of early growth of annual crops.

What we might consider `placebo' swarms in non-agriculture or non-crop cells during the o� or

planting seasons have an estimated e�ect close to 0, in line with expectations. Point estimates of

the e�ect of growing or harvest season swarms in non-agriculture and non-crop cells are positive

and close to being marginally signi�cant in the case of non-crop cells (p = 0.131). I cannot reject

equality of e�ects by land cover of growing/harvest season exposure (p = 0.161 and p = 0.127,

respectively for the two land cover dummies), suggesting e�ects through destruction of pasture or

other vegetation (pasture is present in nearly half of non-crop cells).

This �nding adds to other studies showing that the impact of weather shocks on con�ict risk

varies depending on whether the timing of the shock is such that it is likely to decrease agricultural

productivity (Caruso et al., 2016; Crost et al., 2018; Harari and La Ferrara, 2018). The results in

Table 2 also increase con�dence that the estimated e�ects represent true causal impacts of swarm

exposure and not bias due to selection in where swarms are reported.

6.2 Robustness

Event study results are similar when varying the �xed e�ects and controls included in the estimation

(Figure B4). Estimates are nearly unchanged when dropping the population, weather, and distance

to capital by year controls and when adding estimated swarm exposure propensity-by-year �xed

e�ects. Replacing country-by-year �xed e�ects with year or sub-national region-by-year �xed e�ects

leads to generally more positive (but still not statistically signi�cant) pre-exposure period coe�cients

and very similar post-exposure dynamic treatment e�ects.

In line with these results, average long-term impacts are also similar when varying �xed e�ects

and controls (Figure B5). In addition to the speci�cations shown in Figure B4, I also vary which

of the main controls are included, add weather lags, use alternative measures of precipitation and

temperature from CHIRPS (Funk et al., 2015) and ERA5 (Hersbach et al., 2019) respectively, and

add agricultural land-by-year �xed e�ects. The smallest estimates are with the same controls but

year rather than country-by-year �xed e�ects (a 1.3pp increase in violent con�ict risk) and when

adding exposure propensity-by-year �xed e�ects (a 1.4pp increase). I �nd a 1.9pp increase in violent

con�ict risk when using sub-national region-by-year �xed e�ects to identify impacts o� of more local

variation in swarm exposure. In all cases the estimated long-term average impact of swarm exposure

on violent con�ict remains large and statistically signi�cant, and in no case can I reject that the

estimate under the alternative speci�cation is the same as the main speci�cation.

The main speci�cation includes all years from 1997-2018 and excludes cells more than 100 km

from any swarm report and outside the range of common support of estimated swarm exposure

probability. Dropping individual years when locust swarm exposure events occurred does not a�ect

the estimates, though the estimate is much noisier when dropping the main 2004 exposure event

(Figure B6 Panel B). This indicates that the overall estimates are not driven by any particular

swarm exposure events. The results are similar when including the full sample of cells and when

dropping various geographic regions (Figure B6 Panel A). This addresses concerns that the long-
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term impacts on violent con�ict may be spurious and due to swarm exposure during the sample

period being correlated with factors driving later con�ict emergence. For example, dropping North

Africa ensures that results are not driven by the Arab Spring and dropping Arabia ensures results

are not driven by the civil war in Yemen.

The heterogeneity in e�ects of swarm exposure by timing and land cover indicate that the

estimated impacts are not driven by potential bias in where locust swarms are reported. But

measurement error in locust swarms may still create bias, and other studies of impacts of swarm

exposure have pointed to concerns raised by Showler and Lecoq (2021)�SL2021�that swarms may

be particularly underreported in insecure areas (Gantois et al., 2024; Torngren Wartin, 2018). I �nd

that average long-term e�ects of swarm exposure are slightly smaller in magnitude (a 1.5pp increase

in violent con�ict risk) when dropping countries where SL2021 indicate insecurity has limited locust

control operations, and when dropping cells that experienced violent con�ict during the 2003-2005

locust upsurge which might have prevented swarm reporting (Figure B6 Panel A). If violent con�ict

were driving important levels of swarm non-reporting we might have expected larger e�ects of swarm

exposure when dropping these countries and cells by reducing the share of cells incorrectly classi�ed

as not exposed to any swarm. Instead, the smaller e�ects re�ect lower average change in violent

con�ict in the rest of the sample relative to these more insecure areas.

The similar results in these samples imply that bias due to con�ict-driven underreporting of

locust swarm exposure during the study period is unlikely to be a meaningful factor in the analysis.

I further test the potential for missing swarm observations to a�ect the estimates by simulating

how the results change as I increase the share of cell-years where potential `missing' locust swarms

are imputed within 100 km of a locust swarm report. I �rst impute hypothetical `missing' swarms

in the cells most likely to have been exposed. For this, I impute swarms in all cells with a high

estimated propensity of locust exposure in any year that another locust swarm observed within 100

km. The event study results are very similar even if I assign all cells with an estimated propensity of

exposure above 0.25 to have been exposed in the �rst year a swarm is reported nearby (Figure B7).

Next, I impute swarms in areas experiencing violent con�ict near existing swarm observations,

where SL2021 suggest they may be likely to be unreported. This type of measurement error should

bias my estimates downward as con�ict is serially correlated, and I con�rm that estimated e�ects

of swarm exposure increase as I impute more `missing' swarms in such areas (Figure B8 Panel A).

I then randomly impute hypothetical `missing' swarms across all cell-years with nearby swarms

reported. Estimated average long-term e�ects of swarm exposure on violent con�ict risk fall as I

impute swarms in a larger share of cell-years around where swarms are reported (Figure B8 Panel

B). This could indicate that swarms are more likely to be reported in locations with higher long-term

con�ict risk, but is also consistent with attenuation from random error in the treatment de�nition.

Although I cannot distinguish these explanations, the results are useful in bounding the potential

e�ect of locust swarm exposure. Even if I randomly assign 20% of cell-years near a swarm report to

be exposed to locusts, the estimated e�ect of swarm exposure remains economically and statistically

signi�cant, with a mean 0.6pp increase in violent con�ict risk that is signi�cant at the 95% level in

27



69% of simulations (Figure B8 Panel C). These results strongly imply that the estimated e�ects of

locust swarm exposure are not driven by selection in where swarms are reported.

Next, I consider di�erences in estimated e�ects when aggregating the sample to larger grid

cells. Using larger grid cells addresses several potential measurement issues. First, it minimizes the

possibility that the area exposed to a locust swarm recorded in a cell exceeds the boundaries of the

cell. Second, it reduces concerns about nearby areas that might have been a�ected by unreported

swarms since the entire cell is considered exposed if any swarm is reported within it. Third, it

limits the potential for con�ict spillovers outside the cell. Downsides to analyzing impacts in a more

coarse grid are dilution of treatment intensity (as the share of the cell a�ected by swarms weakly

decreases with cell size) and the loss of quasi-random local variation in swarm exposure which is

central to the identi�cation approach. The latter weakness implies that results at more aggregated

cell sizes should be interpreted with caution.

I observe similar patterns in dynamic impacts of swarm exposure over time when collapsing the

data to 0.5◦ or 1◦ cells (Figure B9). Impacts in post-exposure periods follow a similar patterns as

in Figure 3 but are larger in magnitude. Pre-exposure coe�cients are more positive and generally

larger in magnitude and some are marginally statistically signi�cant. Looking at average long-term

impacts, absolute e�ects are larger when collapsing the data to the level of 0.5 or 1◦ cells, but

e�ects relative to the probability of any violent con�ict in unexposed cells are larger in 0.25◦ cells

(Table B3). This is consistent with higher probabilities of any violent con�ict as cell size increases,

and with less dilution of the swarm exposure treatment in smaller cells.

Similar estimated magnitudes of swarm exposure impacts when using larger grid cells despite

dilution of treatment intensity indicate potential spillovers of violent con�ict outside exposed cells.

Such spillovers are predicted by a model with spatially correlated agricultural shocks, as the returns

to �ghting over output will be larger in areas not a�ected by the shock. For example, McGuirk and

Nunn (2025) �nd that drought in pastoral areas leads to con�ict spillovers in nearby agricultural

areas. Agricultural destruction due to desert locust swarms is both particularly severe and less

spatially correlated than other agricultural shocks, due to swarm �ight patterns. This implies both

a sharp decrease in the opportunity cost of �ghting for agricultural producers in a�ected areas and

potentially more localized spillovers of this con�ict. The main analysis considers ∼ 28× 28km grid

cells where the median locust swarm would only a�ect around 6% of cell area. Con�ict incited by

locust destruction may be more likely to be realized within a grid cell, as the opportunity costs and

rapacity mechanisms are less likely to o�set each other, but large absolute e�ects in larger grid cells

suggests some con�ict spillovers may yet occur.

To test for this directly I de�ne a spillover exposure treatment as being within 100 km of a swarm

outside of the cell and estimate e�ects of this treatment alongside direct exposure using the TWFE

estimator. I �nd a fairly precise null average e�ect of this spillover treatment when controlling for

direct swarm exposure, though spillovers from the 2003-2005 upsurge are marginally signi�cant and

indicate a 1.1pp average long-term increase in con�ict risk for cells within 100 km of a swarm during

that upsurge (Table B4). Focusing on impacts within 0.25◦ cells may therefore understate the full
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e�ect of swarm exposure on violent con�ict risk around a�ected areas, but the results indicate that

most e�ects are contained within cells.

7 Mechanisms

Swarm exposure may a�ect future violent con�ict risk through a variety of channels. A focus on the

long-term average increase in violent con�ict might suggest hysteresis as an explanation as con�ict

is highly autocorrelated over time. But the dynamic patterns rule this out as primary driver of the

impacts of swarm exposure, as there are no immediate e�ects that could lead to persistent long-term

insecurity.

In this section I focus on testing e�ects through agricultural productivity or permanent income

presented in section 3 An exploration of all potential mechanisms, such as increases in local in-

equality, changed perceptions of land productivity and agricultural risk, or e�ects on trust in the

state, in neighbors, or in religion, is outside the scope of the present study. The focus on testing

productivity- or income-related mechanisms does not rule out a potential role for such alternative

mechanisms.

7.1 Opportunity cost vs. rapacity in explaining null immediate e�ects

An opportunity cost mechanism alone, acting through immediate direct e�ects of swarm exposure

on agricultural productivity, would suggest immediate impacts of swarm exposure on violent con�ict

(prediction 1 from Section 3). Severe negative e�ects of locust swarms on agricultural output are

well-documented (Green, 2022; Newsom et al., 2021; Showler, 2019; Symmons and Cressman, 2001;

Thomson and Miers, 2002). Agricultural producers whose productivity falls should be immediately

more likely to switch to engaging in violent con�ict, if they do not have a stronger outside livelihood

option. This prediction is rejected by the results: there are null e�ects of locust swarms on violent

con�ict in the year of exposure and the following year. This implies that decreases in opportunity

costs of �ghting are either not su�cient to motivate a switch in occupation to �ghting, that a�ected

populations primarily turn to other livelihood alternatives, or that another mechanism o�sets the

opportunity cost mechanism.

One possibility is that the rapacity mechanism o�sets the opportunity cost mechanism in the

short term. Other studies of agricultural shocks have shown instances where the rapacity mechanism

outweighs the opportunity cost mechanism (Berman et al., 2017; Koren, 2018; McGuirk and Burke,

2020; Ubilava, 2024; Ubilava et al., 2022). If these mechanisms are o�setting, we would expect

smaller short-term e�ects for con�ict over output�reduced by the agricultural production shock and

therefore decreasing returns to predatory attacks�than over factors of production, whose returns

are not directly a�ected by the transitory shock (prediction 2). I follow McGuirk and Burke (2020)

in de�ning reports of violence against civilians, riots, and looting from ACLED as more likely to

represent con�ict over output and violent con�ict events reported in the UCDP database as more

likely to represent con�ict over factors of production. Violence against civilians and rioting is
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unlikely to target capture of land or other factors of production and regularly involves banditry

and theft though it may also have objectives other than capture of output. Violent con�ict events

recorded in the UCDP database must involve two organized actors and at least 25 battle-related

deaths; these conditions are unlikely to occur outside of situations where groups are contesting

control over territory and therefore of its factors of production.

Figure 4 presents event studies for the e�ects of swarm exposure on these measures of output

and factor con�ict. I �nd null e�ects on swarms on con�ict risk in the year of exposure and the

following year for both con�ict types, with point estimates close to 0. Both con�ict types show

no evidence of signi�cant pre-exposure trends, though the coe�cient on the period 9 years before

exposure is negative and signi�cant for UCDP con�ict. E�ects of swarm exposure on UCDP con�ict

are less consistently statistically signi�cant. Besides the periods 0, 1, and 6 years after exposure,

all estimated e�ects of swarm exposure on ACLED output con�ict are statistically signi�cant at a

95% con�dence level or greater. This level of con�dence is only reached for 2 of 11 estimates of

post-exposure e�ects of swarms on UCDP con�ict, with another 3 coe�cients signi�cant at a 90%

con�dence level (Table A3 columns 2 and 3).

Figure 4: Impacts of swarm exposure on con�ict risk over time, by con�ict type

A) Any ACLED con�ict targeting
civilians (output)
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Note: The dependent variables are dummies for any con�ict event being observed in a cell in a year, with the con�ict type
speci�ed in the panel title. Each panel replicates Figure 3 for a di�erent con�ict outcome. See the �gure note for Figure 3 for
more detail.

Contrary to prediction 2, if anything the point estimates for periods 0 and 1 immediately follow-

ing swarm exposure are slightly larger (though statistically indistinguishable) for output compared

to factor con�ict. Decreased returns to predatory attacks therefore do not appear to explain the

null short-term e�ects of swarm exposure on violent con�ict.

Larger long-term e�ects on a measure of output con�ict than one of factor con�ict (Table A4)

implies much of the increase in violent con�ict following swarm exposure stems from banditry,

looting, terrorism, and other attacks on civilians rather than civil con�ict over control of territory.

This type of violence provides the livelihood for many armed groups engaged in civil con�ict. Locust
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swarm exposure does not increase the returns to such rapacity, so persistent increases in output

con�ict after the immediate period of exposure must be driven by other factors.

7.2 E�ects of swarm exposure on agricultural and economic activity

Long-term average increases in con�ict risk could be explained by persistently reduced opportunity

costs of �ghting through a permanent income mechanism (prediction 3), even though null immediate

e�ects are not consistent with an opportunity cost mechanism alone. E�ects of swarm exposure on

the opportunity cost of �ghting through the immediate productivity shock or through a permanent

income mechanism following e�orts to cope with the initial shock should be observable on measures

of productivity in a�ected areas (prediction 5). Severe negative e�ects of locust swarms on agricul-

tural output are well-documented (Green, 2022; Newsom et al., 2021; Showler, 2019; Symmons and

Cressman, 2001; Thomson and Miers, 2002). While an immediate decrease in agricultural produc-

tivity and thus in the opportunity cost of �ghting in a�ected areas seems incontrovertible, there is

less evidence on the longer-term e�ects of desert locusts on productivity.

I present results of tests of average long-term e�ects of swarm exposure on various measures

related to local economic activity in Table 3. I �rst test for e�ects on measures of agricultural pro-

ductivity, considering the annual maximum of the cell-level average monthly Normalized Di�erence

Vegetation Index (NDVI), the maximum annual cell-level yield across major crops estimated via

remote sensing (Cao et al., 2025), and mean crop yield across DHS survey locations in each cell

(IFPRI 2020).

Table 3: Average impacts of locust swarm exposure on indicators of economic activity

(1) (2) (3) (4) (5) (6) (7)

Max cell
annual
NDVI

Mean cell
estimated

main crop yield
(kg/ha)

Cluster avg
crop yield
(kg/ha)

Cluster total
crop prodn
area (ha)

Cluster total
crop prodn
(metric tons)

Cluster tropical
livestock

units per km2

Estimated
net migration
(per 1000 ppl)

Average e�ect of swarm -0.000 35.9 54.9 -116.7∗∗∗ -316.7 -0.897 -4.691
exposure (0.002) (37.7) (78.7) (44.1) (218.4) (2.304) (3.391)

Observations 258346 50144 3912 4075 4075 4075 249645
Outcome control mean 0.242 2694.7 3567.8 2308.6 12751.5 41.352 -0.494
Country-Year FE Yes Yes Yes Yes Yes Yes Yes
Cell FE Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes

Note: This table presents results from separate regressions of swarm exposure on di�erent outcomes, following Equation 1.
Di�erences in sample sizes are due to di�erences in data availability across outcomes. Crop-speci�c yield estimates are only
available in cells where that crop is produced. Data on DHS survey clusters are only available in cell-years with any completed
DHS surveys within the cell. NDVI is calculated from MODIS satellite imagery (Didan, 2015) as the maximum of monthly
average NDVI values in each cell for 2000-2018. Crop-speci�c yield data are from Cao et al. (2025)) for 1997-2015, where
the `main' crop in cells with multiple crops is de�ned as the highest-yield crop in the cell. DHS cluster data are from the
DHS AReNA database for 1997-2018 (IFPRI 2020) and represent average values within DHS clusters at the time surveys were
conducted. Annual net cell migration for 2000-2018 is from Niva et al. (2023). All regressions include country-by-year and
cell �xed e�ects and controls for annual precipitation, maximum temperature, and population, and distance to capital by year
�xed e�ects. Observations are grid cells approximately 28×28km by year. SEs are clustered at the sub-national region level.
* p < 0.1, ** p < 0.05, *** p < 0.01

On average, locust swarm exposure has no signi�cant e�ect on the maximum of average monthly

cell NDVI in subsequent years and the point estimate is a fairly precise 0, indicating peak greenness is

not changing at the cell level. While I �nd signi�cant decreases in NDVI in the years in which locust
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swarms are reported and the following year (Figure A2 Panel A), these are similar in magnitude

to di�erences in the years before exposure and the e�ects do not persist. Unexpectedly, I also

�nd signi�cant increases in maximum NDVI in two post-exposure periods, though no other post-

exposure estimates are positive.

I also �nd no average long-term e�ects of swarm exposure on measures of crop yield estimated by

Cao et al. (2025) via machine learning combining administrative statistics and remotely sensed data,

or in the periods and locations where DHS surveys have been conducted (IFPRI 2020). Estimated

di�erences in remotely-sensed crop yield in the periods before swarm exposure are positive but

very noisy and are also positive but uniformly smaller post-exposure, and no estimated e�ects are

statistically signi�cant (Figure A2 Panel B). These null long-term e�ects on measures of agricultural

productivity are consistent with locust swarms�a migratory pest�being a transitory shock that

does not a�ect agricultural productivity fundamentals. They also indicate that to the extent swarm

exposure may a�ect later labor productivity in a�ected areas this is not re�ected in measures of

NDVI or crop yields at the cell level.

While swarm exposure has no long-term e�ect on measures of agricultural productivity, it does

signi�cantly decrease total crop area planted in DHS survey clusters. Cluster crop production

area falls by 117 ha (5.0%) on average in the years following swarm exposure. While there is no

signi�cant e�ect on total cluster crop production quantity, the point estimate is large and negative,

in line with the �nding of no signi�cant e�ect of swarm exposure on mean survey cluster crop yield

(Table 3 columns 3-5). The decrease in crop production could indicate a transition away from

agriculture in exposed areas. I do not �nd any impact of locust swarms on density of livestock

ownership (measured in Tropical Livestock Units), but the DHS AReNA database includes limited

information on other measures of household wealth which could be used to test the hypothesis that

coping with swarm exposure persistently decreases wealth.

Finally, I consider e�ects on migration. Leaving to search for work is a common response to

locust crop destruction (Thomson and Miers, 2002) and over 8 million people were displaced across

East Africa as a result of the 2019-2021 locust outbreak (The World Bank, 2020). Ghorpade (2024)

�nds that locust swarm exposure increases stated willingness to migrate of rural individuals in

Yemen by 12 percentage points, driven by agricultural households. Using data from Niva et al.

(2023), I �nd that swarm exposure does not signi�cantly a�ect net annual migration in subsequent

years. The point estimate is large, indicating 4.7 more people per 1000 population migrating out

of exposed areas per year on average, suggesting that areas directly a�ected by locust swarms

may indeed respond with more out-migration despite null average cell-level e�ects. There are no

signi�cant pre-treatment di�erences in estimated net migration (though standard errors are large)

and no immediate e�ects of swarm exposure, but 8 of 11 treatment e�ects are negative and 3 of

these are marginally statistically signi�cant (Figure A2 Panel C). Persistent out-migration from

a�ected areas could be consistent with lower labor productivity.

Taken together, the results on the e�ects of swarms exposure on economic outcomes at the grid

cell level in Table 3 do provide limited evidence of a possible permanent income mechanism. NDVI
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and crop yields do not decrease signi�cantly, indicating agricultural productivity is not reduced

in years following a locust swarm on average. Livestock ownership is also not signi�cantly lower,

which does not align with a permanent income mechanism based on an initial income shock depleting

household assets. On the other hand, signi�cant decreases in crop production area and suggestive

increases in out-migration suggest some households leave agriculture in favor of migrating or other

activities, in line with reductions in agricultural productivity prompting a shift in occupation. If

migration is an attractive alternative to agricultural production for households in areas exposed to

locust swarms it may be the case that engaging in violent con�ict would also be attractive in some

circumstances, particularly in periods of heightened grievance.

One possible reason for the non-signi�cant average e�ects of locust exposure on most outcomes in

Table 3 is that these intent-to-treat estimators include too small a share of treated areas. The median

locust swarm covers around 50 km2, or 6% of the area of a 0.25 degree cell. Most DHS clusters in

cells exposed to locust swarms will likely not have experienced any agricultural destruction, so the

intent to treat e�ects I estimate will be attenuated toward 0. Taking average NDVI or remotely-

sensed crop yield values or estimated net migration over the entire cell will also attenuate any

impacts in areas actually a�ected. Analyzing impacts of swarm exposure on violent con�ict at the

grid cell level reduces measurement error from uncertainty in the exact areas exposed to locust

swarms and in where con�ict events occur, and reduces concerns about spillover con�ict realized

in the area surrounding a�ected populations rather than in their particular location. This grid

cell-level approach is less likely to capture economic impacts of swarm exposure which are likely

more concentrated in directly a�ected areas. More targeted intent to treat analyses focusing on

economic impacts of locust swarms only in the close vicinity of the swarm reports would be more

likely to detect e�ects, though raise di�culties in determining how to de�ne exposed areas.

A growing body of evidence uses di�erent approaches to de�ne community-level swarm exposure

and link these to survey data, and �nds persistent e�ects of swarm exposure on outcomes that could

imply reduced labor productivity. Most directly, Marending and Tripodi (2022) �nd that agricul-

tural pro�ts of households in parts of Ethiopia exposed to locust swarms in 2014 are 20-48% lower

two harvest seasons after swarm arrival, driven by a large drop in farm revenues. This indicates

that impacts on agricultural productivity are not limited to the year of swarm exposure. Indirectly,

several studies show that young children exposed to locust swarms achieve lower educational at-

tainment (Asare et al., 2023; De Vreyer et al., 2015) and have lower height-for-age (Conte et al.,

2023; Gantois et al., 2024; Le and Nguyen, 2022; Linnros, 2017) when they are older. Such human

capital e�ects of swarm exposure could decrease permanent labor productivity. Additional work is

needed to further test predictions of the permanent income and opportunity cost mechanisms but

conducting such analyses is beyond the scope of this paper.

Exposure to locust swarms may increase vulnerability to future grievances through channels

other than the permanent income mechanism presented in Section 3. Desert locust swarms are

localized natural disasters with concentrated e�ects on agricultural production in only part of each

0.25◦ cell, increasing within-cell inequality which may create discontent and cause con�ict (Gurr,
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2015). Swarm exposure could also have psychological e�ects on a�ected populations, as documented

in other studies of the climate-con�ict relationship (see Burke et al. (2024) for a review). Locust

control is seen by many households as the responsibility of the state (Thomson and Miers, 2002).

Exposure to a locust swarm may therefore decrease trust in the state and foster or add to a sense of

grievance, particularly as many countries a�ected by locust upsurges had limited capacity to o�er

relief to a�ected areas. E�ects of locust swarms on religiosity may also be important. The dominant

religion in the sample countries is Islam, where locusts are mentioned as a punishment from Allah

and as a metaphor for Judgment Day, and they have similar connotations in Christianity.15 If

locust swarms increase religiosity in exposed areas this may a�ect the perceived returns to �ghting

by increasing social, emotional, and supernatural costs, suppressing immediate violent con�ict.

Increased religiosity could also help explain higher con�ict incidence in exposed areas following

the onset of various civil con�icts (religion played an important role in the protests and con�icts

during and following the Arab Spring) and Islamic terror movements in the sample countries. Such

mechanisms could be tested empirically by analyzing di�erences in impacts of swarm exposure on

con�ict by measures of proximity to governing groups and religious identity across cells, and by

considering how swarm exposure a�ects measures of government trust or support and of religiosity

over time.

7.3 Explaining dynamic impacts of swarm exposure on con�ict

The pattern of dynamic long-term impacts of locust swarm exposure on violent con�ict shown in

Figure 3 is not intuitive. Why are the largest impacts delayed, particularly given the null immediate

e�ects? The opportunity cost mechanism alone would suggest immediate impacts of swarm exposure

on violent con�ict (prediction 1 from section 3), and that if they persist through persistent e�ect on

permanent income impacts should either fall over time as a�ected areas recover or be fairly stable

if households reach a new productivity equilibrium (prediction 4). Instead, these predictions are

rejected by the results, indicating some mechanism creating heterogeneity in dynamic impacts of

swarm exposure.

One potential source of heterogeneity could be exposure to subsequent economic shocks. These

could further lower the opportunity cost of �ghting in swarm-exposed areas and cause violent con�ict

if the e�ects from the initial locust shock was not su�ciently severe. I test for this possibility by

estimating heterogeneity in impacts of swarm exposure by whether a country is experiencing a famine

and whether a cell is experiencing a severe drought in a given year (Table 4). Swarm exposure has a

15Verse 7:133 of the Quran says �So We plagued them with �oods, locusts, lice, frogs, and blood�all as clear signs,
but they persisted in arrogance and were a wicked people� in describing the punishment of Ancient Egypt. The same
punishments are described in Exodus 10 of the Bible, where verses 14-15 say �They invaded all Egypt and settled
down in every area of the country in great numbers. Never before had there been such a plague of locusts, nor
will there ever be again. They covered all the ground until it was black. They devoured all that was left after the
hail-everything growing in the �elds and the fruit on the trees. Nothing green remained on tree or plant in all the
land of Egypt.� Verse 54:7 of the Quran says �They will emerge from the graves as if they were scattered locusts with
their eyes cast down� in describing the resurrection of the dead on the Day of Judgment. In the Bible, Revelations
9:1-10 describes the coming of a plague of locusts to torture �only those people who did not have the sign of God on
their foreheads� during the period of Judgment Day.
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signi�cantly larger impact on violent con�ict in countries experiencing famine, but the average e�ect

outside these contexts is similar to the overall average e�ect (column 1). On the other hand, there

is no signi�cant di�erence in the e�ect of swarm exposure by whether a cell experienced drought

either in the current or previous year (columns 2 and 3). I cannot test heterogeneity in impacts

by subsequent exposure to locust swarms as control cells by de�nition have no exposure during

the sample period, but I �nd no heterogeneity in impacts by exposure prior to 1990 which could

have suggested either adaptation to or compounding e�ects of repeated swarm exposure (column

4). These results indicate that subsequent economic shocks cannot explain the patterns of dynamic

impacts of swarm exposure.

Table 4: Heterogeneity in impacts of exposure to locust swarms on violent con�ict risk by exposure
to other shocks

Outcome: Any violent con�ict event (1) (2) (3) (4)

Any active
famine

in country

Any active
drought
in cell

Any drought
prev. year
in cell

Any swarm
before 1990

in cell

E�ect of exposure, No shock 0.016∗∗∗ 0.011∗∗∗ 0.018∗∗∗ 0.017∗∗∗

(0.004) (0.003) (0.004) (0.004)

E�ect of exposure, Any shock 0.060∗∗∗ 0.015∗∗ 0.023∗∗∗ 0.019∗∗∗

(0.017) (0.007) (0.008) (0.006)

Observations 301664 294353 295564 301664
p-value, test of equality of coe�cients 0.010 0.511 0.527 0.626
Country-Year FE Yes Yes Yes Yes
Cell FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Note: The table presents results from separate regressions where I estimate heterogeneous average long-term impacts of locust
swarm exposure on the probability of any violent con�ict event in a cell-year by indicators of other shocks using the BJS
estimator and built-in heterogeneity option in the Stata implementation of the estimator. The famine indicator in column 1
is de�ned at the country-year level by whether any famine was declared. The drought indicators in columns 2-3 are cell-year
level variables, de�ned by whether there are at least 4 consecutive months where the SPEI is below -1.5. Swarm exposure
prior to 1990 in column 4 considers exposure in the period from 1985-1989 where there were several major locust upsurges not
considered in the de�nition of swarm exposure in the study sample period. At the bottom of the table I include p-values for the
test of equality of the coe�cients representing e�ects by the presence of civil con�ict. All regressions include country-by-year
and cell �xed e�ects and controls for annual precipitation, maximum temperature, and population, and distance to capital by
year �xed e�ects. Observations are grid cells approximately 28×28km by year. SEs are clustered at the sub-national region
level.
* p < 0.1, ** p < 0.05, *** p < 0.01

An important observation is that the gap between swarm exposure and the largest impacts

on violent con�ict risks corresponds to the gap between the timing of the main swarm exposure

event in the sample period�the 2003-2005 upsurge�and the years when the general risk of con�ict

increased across the sample countries due to the Arab Spring, the spread of Islamic terrorist groups,

and multiple civil wars, as shown in Figure 5 Panel A. Panel B shows that exposure to this upsurge

did not signi�cantly increase the risk of violent con�ict until 2011, the year of several uprisings

related to the Arab Spring, but that e�ects remain large and statistically signi�cant in subsequent

years. I �nd similar patterns when looking at e�ects of the upsurge in di�erent countries with

di�erent events precipitating the spread of violent con�ict (Figure B10).

As the 2003-2005 locust upsurge accounts for 72% of swarm exposure in the sample period, its

dynamic e�ects drive the main event study results including all swarm exposure events. Figures

3 and 5 show clearly that swarm exposure does not generally cause the immediate onset of new

violent con�icts. Instead, exposed areas appear to be more vulnerable or susceptible to be engaged
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Figure 5: Changes in con�ict environment and impacts of exposure to 2003-2005 locust upsurge on
violent con�ict risk

A) Swarm and con�ict trends
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Note: Panel A shows the share of sample cells experiencing any locust swarm or con�ict event by year. Panel B
shows results for an event study of exposure to the 2003-2005 desert locust upsurge, with 2003 as the reference period,
with the same �xed e�ects and controls speci�ed in Equation 1. The dependent variable is a dummy for any violent
con�ict event, and treatment is de�ned as any locust swarm observation from 2003-2005. The bars represent 95% con�-
dence intervals using SEs clustered at the sub-national region level. Observations are grid cells approximately 28×28km by year.

in later violent con�ict precipitated by other factors, implying mechanisms related to the returns

to engaging in con�ict and not just the opportunity cost of �ghting.

Prediction 6 of the model provides a potential explanation: variation in local grievances, as

re�ected in episodes of civil unrest, should create heterogeneity in the dynamic impacts of swarm

exposure. Null short term e�ects may re�ect relatively peaceful conditions at the time of the main

locust exposure events, limiting the feasibility of �ghting and the potential net returns. The largest

impacts of swarm exposure are realized in a period characterized by multiple popular uprisings,

civil wars, and outbreaks of Islamic militancy. Signi�cant increases 2-6 years after exposure in the

main event study compared to null e�ects over this period for the 2003-2005 upsurge are consistent

with later swarm exposure events occurring closer to or during periods when heightened grievances

manifest in civil con�ict.

I do not measure grievances directly, so instead I rely on situations of observable civil con�ict as

proxies of contexts or almost certain heightened underlying grievances. To formally test prediction

6 I consider whether there is heterogeneity in average long-term impacts of swarm exposure by

various indicators of civil con�ict or insecurity. At the cell-year level, I measure whether there are

any concurrent violent con�ict events in surrounding cells, either in the encompassing 1◦ cell, in the

surrounding sub-national region, or in the rest of the country outside the surrounding sub-national

region. These measures rely on the ACLED data and do not take into consideration any particular

causes of the con�ict.

At the country-year level, I identify a variety of situations which led to increases in civil con�ict

and insecurity in the following years during the sample period. For each of these, I de�ne a country

as being in an insecure situation in all years after the year in which the particular situation began.
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I �rst consider the Arab Spring speci�cally, which began in late 2010 or early 2011 in a number of

sample countries. For example, civil con�ict in Libya began to increase in 2011 with the start of

the Arab Spring and then continued with the subsequent civil war. Egypt underwent a revolution

in 2011 as part of the Arab Spring and experienced a coup d'etat in 2013 and continued higher

levels of insecurity. I then look at cases of revolutions and coups d'etat and of civil wars and

separatist movements. For example, the 2013 coup d'etat in Egypt falls under the former category,

and the civil war in Libya falls under the latter. Finally, I analyze the spread of (often Islamic)

terrorist organizations across the sample countries. For example, armed Islamist violence escalated

in Burkina Faso starting in 2016, with many attacks by Al Qaeda and IS a�liates that established

control over many rural parts of the country. Sudan and Somalia are categorized as subject to

Islamic terrorist organization for the entirety of the sample period.

Table 5 shows that average long-term impacts of locust swarm exposure on violent con�ict are

smaller and in some cases not statistically signi�cant in locations and areas not characterized by

some form of civil con�ict, a proxy for heightened grievances. Consistent with prediction 6, e�ects

of swarm exposure are signi�cantly larger in all con�ict situations, and the magnitudes of these

di�erences are all quite large. The largest di�erences are by nearby violent con�ict at the cell-

year level. Past swarm exposure has no e�ect on violent con�ict in locations and periods with no

violent con�ict elsewhere around the cell, in the sub-national region, or elsewhere in the country.

But cells exposed to locust swarms are much more likely to experience violent con�ict when it is

occurring in surrounding areas. One possibility is that swarm exposure could be causing con�ict

within the cell that spills over into the rest of the region or country. This seems unlikely given

limited evidence of con�ict onset or spillovers from swarm exposure (Table B4,Figure 3). I also

�nd similar heterogeneity when considering violent con�ict in the country outside the cell's region,

which is less likely to re�ect spillovers from swarm exposure in the cell. The other interpretation is

that violent con�ict that emerges elsewhere is more likely to either target or engage areas previously

exposed to locust swarms.

Turning to country-level absorbing indicators of civil con�ict or insecurity, I �nd that average

e�ects of swarm exposure are statistically and economically much larger in contexts experiencing

a given type of civil con�ict. The e�ect of swarm exposure outside of national civil con�ict situa-

tions is about half the overall average impact (Table 1), and remains signi�cant because countries

not experiencing a given type of insecurity may be experiencing other types. Swarm exposure in

countries a�ected by the Arab Spring protests and uprisings increases the likelihood of any violent

con�ict by 3.6pp. Exposure increases the likelihood of violent con�ict by 2.9pp in countries having

experienced a revolution or coup d'etat, by 4.0pp in countries having experienced a civil war or

separatist movement, and 2.5pp in countries with active Islamic terror groups engaging in violent

con�ict.

The heterogeneity in locust swarm impacts by indicators of local civil con�ict or insecurity could

potentially be due to mechanisms other than grievances. First, insecurity may further decrease local

labor productivity, decreasing the opportunity cost of �ghting. If e�ects of the initial swarm exposure
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Table 5: Heterogeneity in impacts of exposure to locust swarms on violent con�ict risk by indicators
of civil con�ict

Outcome: Any violent con�ict event (1) (2) (3) (4) (5) (6) (7)
Any violent
con�ict in
surrounding
1 deg cell

Any violent
con�ict in
surrounding
sub-region

Any violent
con�ict in

country outside
sub-region

Post-onset of
Arab Spring
in country

Post-revolution
or coup d'etat
in country

Post-civil war
or separatist
movement
in country

Post-onset
of Islamic

terror groups
in country

E�ect of exposure, 0.001 0.001 0.001 0.009∗∗∗ 0.008∗∗∗ 0.008∗∗∗ 0.010∗∗∗

No civil con�ict (0.002) (0.001) (0.001) (0.003) (0.002) (0.002) (0.003)

E�ect of exposure, Any 0.098∗∗∗ 0.038∗∗∗ 0.020∗∗∗ 0.036∗∗∗ 0.029∗∗∗ 0.040∗∗∗ 0.025∗∗∗

Any civil con�ict (0.013) (0.008) (0.005) (0.011) (0.008) (0.011) (0.007)

Observations 301664 301664 301664 301664 301664 301664 301664
p-value, test of equality of coe�cients 0.000 0.000 0.000 0.022 0.009 0.004 0.058
Country-Year FE Yes Yes Yes Yes Yes Yes Yes
Cell FE Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes

Note: The table presents results from separate regressions where I estimate heterogeneous average long-term impacts of locust
swarm exposure on the probability of any violent con�ict event in a cell-year by indicators of civil con�ict using the BJS estimator
and built-in heterogeneity option in the Stata implementation of the estimator. The civil con�ict indicators in columns 1-3
are cell-year level variables, de�ned by the presence of any violent con�ict event in the ACLED database for the stated areas
around but outside a particular cell. The indicators in columns 4-7 are absorbing variables de�ned at the country level based
on the timing that Arab Spring uprisings, revolutions or coups d'etat, civil wars or separatist movements, or Islamic terror
attacks began in the country. Countries not exposed to such con�icts are coded as 0 for all years. At the bottom of the table
I include p-values for the test of equality of the coe�cients representing e�ects by the presence of civil con�ict. All regressions
include country-by-year and cell �xed e�ects and controls for annual precipitation, maximum temperature, and population, and
distance to capital by year �xed e�ects. Observations are grid cells approximately 28×28km by year. SEs are clustered at the
sub-national region level.
* p < 0.1, ** p < 0.05, *** p < 0.01

are not su�cient to motivate a�ected individuals to choose to �ght, an additional negative shock

could provide the necessary push. In this case I would also expect impacts of swarm exposure to

be larger in periods with other negative agricultural shocks. While e�ects are indeed larger in years

when countries are experiencing a famine as shown in Table 4, there is no signi�cant di�erence in

e�ects by whether a cell is experiencing a drought.

Second, areas exposed to locust swarms may be less able to defend themselves from attacks and

therefore be targeted by armed groups when these become active. The same mechanisms that would

make exposed areas more vulnerable�persistent reductions in wealth�would also make them less

attractive targets, however, so it is unclear how the expected returns to predation in these areas

would change.

The other possibility relates to the returns to engaging in violent con�ict, and how grievances

may both reduce the costs of and increase expected bene�ts from �ghting. Individuals in areas with

lower opportunity costs of �ghting following a severe prior agricultural shock may generally not

�nd switching to �ghting optimal as violent con�ict is a costly and collective activity. Formation of

armed groups and recruitment of �ghters will be easier in areas of greater grievances reducing the

social, emotional, and monetary costs of �ghting. While swarm exposure may itself create lasting

grievances, the local variation in exposure may prevent this from leading to general mobilization

except in situations of broader grievances prompted by other factors or events, when �ghting is

more accessible or there are additional potential returns to con�ict.

This heterogeneity in swarm impacts relates to other studies of heterogeneous e�ects of agricul-

tural shocks on con�ict risk. Buhaug et al. (2021) �nd that drought only causes the onset of civil

con�ict among ethnic groups experiencing recent political marginalization, an indicator of likely
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heightened grievances. Berman and Couttenier (2015) study the short-term e�ects of exogenous

income shocks through international agricultural commodity prices on the risk on violent con�ict in

areas producing these commodities. They �nd that external income shocks act as threat multipliers

a�ecting the �geography and intensity of ongoing con�icts� (p. 759), pointing to a likely opportunity

cost mechanism Similarly, Bazzi and Blattman (2014) �nd that commodity price shocks primarily

a�ect con�ict incidence and not con�ict onset.

The results on locust swarms further indicate that exposure to an agricultural shock can have

delayed e�ects on con�ict incidence. This relates to Narciso and Severgnini (2023)'s study of the

impact of the Great Irish Famine in 1845-1850 on con�ict during the Irish Revolution in 1916-

1921. That study shows that individuals in families more a�ected by the famine were more likely to

participate in the revolution and argues that impacts operate through persistent e�ects on grievances

against British rule.

8 Estimating long-term impacts of transitory shocks

Locust swarms are a unique and catastrophic agricultural shock, but the model described in Section

3 is general and predicts similar patterns of impacts on the risk of violent con�ict for other severe

transitory shocks to agricultural production. In this section I �rst compare the impacts of locust

swarm exposure to the impacts of exposure to drought, a type of shock that has been studied much

more extensively, and consider whether the results point to similar mechanisms. I then brie�y

discuss the implications of the results for di�erent approaches to estimating impacts of transitory

economic shocks which may nevertheless have persistent e�ects.

8.1 Comparing locust swarms and drought

Many studies �nd short-term impacts of drought exposure on con�ict risk,16 but I am not aware

of any considering dynamic impacts over time. To measure drought exposure I follow several of

these papers in using the Standardized Precipitation and Evapotranspiration Index (SPEI) which

combines both precipitation and the ability of the soil to retain water. The units of the SPEI

are standard deviations from the historical average within a grid cell, where deviations within

1 are typically considered near normal conditions. I use monthly data from the SPEI Global

Drought Monitor (Begueria et al., 2014) as compiled in the PRIO-GRID database. I de�ne a cell as

experiencing a drought shock in a particular year if there are at least 4 consecutive months where

the SPEI is below -1.5, where this streak can include the last months of the previous year. This

value is chosen to reduce the probability of multiple such drought exposures during the study period.

A streak of at least 4 drought months is observed in 3.6% of all cell-years, compared to 7.7% for

streaks of at least 3 months and 22.3% for streaks of at least 2 months.17

16See e.g., Buhaug et al. (2021), Couttenier and Soubeyran (2014), Harari and La Ferrara (2018), Jia (2014),
Maystadt and Ecker (2014), McGuirk and Nunn (2025), Von Uexkull (2014), and Von Uexkull et al. (2016)

17Patterns of treatment e�ects are similar but standard errors are much larger if I use a threshold of 5 months but
I �nd no signi�cant e�ects with a threshold of 6 months (Table B5).
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As with locust swarm exposure I identify the �rst year during the sample period in which a cell

experiences a drought and consider cells to be `a�ected' in all subsequent years. Across all sample

cells, 48.6% experience at least one drought from 1996-2014. Nearly half (48.8%) of all exposure

occurs in 2010 when around one-third of the study area was a�ected by drought, with no other year

accounting for more than 8% of exposure.

Figure 6 shows the results from an event study of drought exposure. Pre-exposure coe�cients

are uniformly negative and small in magnitude but are statistically signi�cant at a 95% con�dence

level in 6 of 10 pre-exposure periods. Standard errors for pre-exposure periods are smaller than in

Figure 3 because nearly all exposed cells are observed for at least 10 years pre-exposure. This result

indicates a slightly lower baseline risk of violent con�ict in areas ever exposed to drought compared

to those not yet or never exposed. But there is no evidence of changes in this di�erence over time

before the �rst drought exposure in the sample period. Treatment e�ect estimates are positive for

all post-exposure periods and are statistically signi�cant for 10 of 11 periods. The average e�ect

over the 10 years post-exposure is a 1.1pp increase in the annual risk of violent con�ict.

Figure 6: Impacts of exposure to drought on violent con�ict risk over time
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The dependent variable is a dummy for any violent con�ict event in a cell-year. The �gure replicates Figure 3 but considering
drought instead of locust swarm exposure. See the �gure note for Figure 3 for more detail. Drought exposure is de�ned as ≥4
consecutive months in the year with SPEI<-1.5.

Violent con�ict risk increases by a statistically signi�cant 0.7 percentage points in the year of

drought exposure. This signi�cant increase, in contrast to null immediate e�ects of exposure to

a desert locust swarm, suggests droughts cause the onset of some con�ict. A delay in the largest

impacts of drought exposure on violent con�ict mirrors the pattern for locust swarm exposure; in the

case of drought the largest e�ects occur 5 to 10 years after exposure. The main drought exposure

event was in 2010, around the time that insecurity and violent con�ict in the study area began
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to increase (Figure 5 Panel A), which may explain why drought causes con�ict onset while locust

swarms do not. Lags in the largest impacts of drought exposure are consistent with the timing of

the largest increases in violent con�ict.

Table 6 compares average long-term impacts of swarm and drought exposure. Columns 1-3

reproduce results for impacts of swarm exposure from Table 1 and Table 5. Column 4 shows

that on average, drought exposure increases the risk of any violent con�ict in a given year by 0.8pp

(73%). This estimate is smaller than the average of the event study treatment period e�ects because

treatment e�ects decrease more than 10 years after drought exposure, and are no long statistically

signi�cant starting 13 years afterward (Figure B11). The e�ect is also smaller than the impact of

swarm exposure, potentially re�ecting the greater intensity of agricultural destruction from locust

swarms compared to drought. Column 5 shows that impacts of drought on violent con�ict are

concentrated in cells with any crop land, with an even sharper di�erence than for e�ects of locust

swarms.

Column 6 tests for heterogeneity by activity of armed groups in the sub-region around exposed

cells in a given year, an indicator of local civil con�ict and proxy for heightened local grievances. I

�nd a precise null e�ect of drought exposure in cell-years with no violent con�ict in surrounding cells

in contrast to a 1.8pp increase in the probability of violent con�ict in cell-years with such insecurity

nearby. This relates to �ndings from Buhaug et al. (2021) and Michelini (2025) that the short-term

impact of drought on con�ict is driven by a areas with marginalized ethnic groups (in Africa) and

areas with higher predicted con�ict risk outside of drought periods (globally), respectively. Buhaug

et al. (2021) argue that drought acts like a trigger to transform preexisting grievances into violent

con�ict. The heterogeneity in impact of past shock exposure by nearby civil con�ict is not as large

for drought as for locust swarms, likely because the sample for the analysis of swarm exposure

includes more high-con�ict years from 2015-2018 that are not included in the drought analysis

sample.

Table 6: Average impacts of exposure to agricultural shocks on violent con�ict risk

Outcome: Any violent con�ict event (1) (2) (3) (4) (5) (6)

Swarms
Swarms, Z =
Any crop land

Swarms, Z =
Any con�ict in

region outside cell Drought
Drought, Z =
Any crop land

Drought, Z =
Any con�ict in

region outside cell

Average e�ect of shock 0.018∗∗∗ 0.008∗∗∗

exposure (0.004) (0.002)

E�ect of exposure, Z=0 0.007 0.001 -0.000 -0.000
(0.004) (0.001) (0.001) (0.001)

E�ect of exposure, Z=1 0.023∗∗∗ 0.038∗∗∗ 0.020∗∗∗ 0.018∗∗∗

(0.006) (0.008) (0.005) (0.003)

Observations 301664 301664 301664 452574 452559 452574
p-value, equality of e�ect by Z .025 < .001 < .001 < .001
Outcome mean, no exposure 0.028 0.028 0.028 0.011 0.011 0.011
Country-Year FE Yes Yes Yes Yes Yes Yes
Cell FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes

Note: The table reproduces results for impacts of swarm exposure from Table 1 and Table 5, and then presents the same analyses
considering impacts of drought rather than swarm exposure. See the table notes for Table 1 and Table 5 for more detail. Drought
exposure is de�ned as ≥4 consecutive months in the year with SPEI<-1.5. Observations are grid cells approximately 28×28km
by year for 1997-2018 for swarms and 1997-2014 for drought. The sample for impacts of swarm exposure is restricted to cells
within 100 km of a swarm observation.
* p < 0.1, ** p < 0.05, *** p < 0.01
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The similar patterns for impacts of exposure to drought and locust swarms on the risk of violent

con�ict indicate that they may be driven by similar mechanisms. The heterogeneity by local inse-

curity in particular highlights the importance of these shocks in creating conditions that increase

vulnerability to future con�ict prompted by more proximate grievances.

The results also increase our con�dence that the large long-term impacts of swarm exposure on

violent con�ict are not driven by bias in where locust swarms are reported. Identifying drought from

remotely-sensed data does not depend on any reporting and where such droughts are realized over

time and space is plausibly random, given that the drought index is based on within cell variation

over time. Therefore, any potential omitted variable that could explain the relationship between

reported swarm exposure and con�ict is unlikely to also explain the impacts of drought exposure.

8.2 Estimating the e�ects of economic shocks

These results have implications for research on the impacts of economic shocks. The economic

literature on weather or agricultural shocks and con�ict has overwhelmingly focused on the short-

term and assumes e�ects of shocks are transitory�lasting only for the period in which the shock

occurs�or otherwise persisting for very few periods.This follows from a focus on the direct e�ects of

the shocks, such as decreases in agricultural productivity, which typically are transitory. A common

empirical approach is a distributed lag two-way �xed e�ects model which takes the form:

Conflictict = α+ β1Shockic,t + β2Shockic,t−1 + δXict + γct + µi + ϵict (2)

This follows the persistent e�ects model in Equation 1 with the exception that instead of the Shock

variable representing an absorbing treatment status over subsequent years, in this transitory e�ects

model the outcome is una�ected in the years following a shock except as captured by the one year

lag. This lag allows for limited delays or persistence in impacts of the shock (Burke et al., 2015).

With cell �xed e�ects the short-term impacts in the transitory e�ects model are estimated

relative to con�ict risk in other years in the same cell where a shock is not observed, including years

after exposure to a shock. For shocks that cause persistent increases in con�ict, this implies that

the transitory e�ects estimate will be biased downward as a result of comparing con�ict risk in the

year a shock is observed against later years with no shock but higher con�ict risk caused by the

initial shock.

Table 7 shows that this is the case for locust swarms and drought, comparing estimates from

regression models assuming transitory (one year) e�ects or medium-term (�ve year) e�ects to the

BJS event study estimates which model the shock as a permanent treatment (for 10 post-exposure

periods) and accurately capture dynamic treatment e�ects. For locust swarms, the transitory e�ects

model estimates a highly signi�cant 1.5pp decrease in the probability of any violent con�ict in the

year of exposure relative to una�ected cells. The bias is not reduced by including 5 years of lags

in the model, which allows for persistence of e�ects only for the number of periods included as

lags. The year zero estimate in this model is 1.6pp lower than the event study estimates, while the

estimates for the next �ve periods are consistently 1.4-2-0pp lower. I can reject that the transitory
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and �ve-year estimates are the same as the event study estimates with high con�dence, consistent

with downward bias of these models when treatment e�ects are not only persistent but increasing

over a long period.

Table 7: Impacts of agricultural shocks on the con�ict risk, treating shocks as temporary vs. per-
sistent

(1) (2) (3) (4) (5) (6)
Locust swarm Drought

Transitory
e�ects

5 year
e�ects

Event study
e�ects

Transitory
e�ects

5 year
e�ects

Event study
e�ects

Any shock during year -0.015∗∗∗ -0.019∗∗∗ -0.003 0.004 0.001 0.007∗∗

(0.004) (0.005) (0.003) (0.003) (0.002) (0.003)

Any shock, 1 year lag -0.012∗∗ 0.005 -0.000 0.005∗∗∗

(0.006) (0.004) (0.002) (0.002)

Any shock, 2 year lag -0.007 0.013∗∗∗ -0.001 0.005∗∗

(0.006) (0.005) (0.002) (0.002)

Any shock, 3 year lag -0.008 0.012∗∗∗ -0.002 0.006∗∗∗

(0.006) (0.004) (0.002) (0.002)

Any shock, 4 year lag 0.002 0.015∗∗∗ -0.003 0.007∗∗∗

(0.007) (0.005) (0.003) (0.002)

Any shock, 5 year lag -0.001 0.013∗∗ -0.004 0.015∗∗∗

(0.007) (0.005) (0.004) (0.004)

Average long-term e�ect 0.018∗∗∗ 0.008∗∗∗

(0.004) (0.002)

p-value, year 0 equality 0.024 0.006 0.407 0.118
with event study

p-value, year 5 equality 0.090 0.002
with event study

Observations 301664 233104 301664 454113 327746 452574
Year FE Yes Yes Yes Yes Yes Yes
Cell FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes
Estimation TWFE TWFE BJS TWFE TWFE BJS

Note: The dependent variable is a dummy for any violent con�ict event observed in a cell-year. All regressions estimate the
e�ect of shock exposure on violent con�ict controlling for total cell population and current year measures of total precipitation
and maximum annual temperature along with cell and country-by-year �xed e�ects and distance to capital-by-year �xed e�ects.
In columns 1 and 4 the shock is assumed to only have an e�ect in the year it is observed, and e�ects are estimated using TWFE.
Columns 2 and 5 allow for persistent or delayed e�ects of the shock for up to 5 years after it is observed, and also include 5 lags
of precipitation and temperature. E�ects are estimated using TWFE. Columns 3 and 6 present a subset of the treatment e�ect
estimates from the BJS event study estimator considering 10 pre-exposure and 10 post-exposure periods. These estimates are
the same as those shown in Figure 3 and Figure 6. At the bottom of these columns I also present the estimates of average
long-term e�ects of the shock from Table 6. At the bottom of columns 1, 2, 5, and 5 are p-values for tests of equality between
coe�cients under the transitory, 5 year, and event study models. Observations are grid cells approximately 28×28km by year
for 1997-2018 for swarms and 1997-2014 for drought. The sample for impacts of swarm exposure is restricted to cells within
100 km of a swarm observation. SEs clustered at the sub-national region level are in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01

The transitory e�ects estimate for locust swarms�a 1.5pp decrease in violent con�ict the year

locusts are observed�is very close to Torngren Wartin (2018)'s estimate of a 1.3pp decrease using

a similar method.18 He interprets the result as suggesting endogenous under-reporting of locust

swarm presence correlated with violent con�ict. The much larger event study estimate for the

impact of swarms on con�ict in the same year suggests the large negative estimate in the transitory

18Torngren Wartin (2018) employs the same general distributed lag speci�cation with cell and country-by-year �xed
e�ects as in columns 1 and 2 of Table 7 but with some di�erent weather controls and varying lags of locust presence.
His analysis is at the level of 0.5◦ and 0.1◦ cells and considers locust swarms and bands together while I focus on
more destructive swarms alone. He also includes some African countries with very few locust swarm observations
over time which I exclude, while excluding Arabian countries with extensive locust activity which I include.
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e�ects regression can instead be attributed to downward bias from ignoring long-term impacts of

swarm exposure on con�ict risk.

In the case of drought, the transitory e�ects estimate for the year of exposure is a non-signi�cant

0.4pp increase in violent con�ict risk, compared to a statistically signi�cant 0.7pp increase in the

event study estimate. While I cannot reject that these estimates are the same (p=0.407), the two

approaches would yield di�erent conclusions with di�erent policy implications. As with the analysis

with locust swarms, including �ve lagged shock variables aggravates the bias in the estimated year

zero e�ect, though I still cannot reject equality with the event study estimate (p=0.118). The bias

in the transitory e�ects estimates is generally lower when considering drought relative to locust

shocks. This can be explained by the lower average long-term e�ect: a 0.8pp increase in con�ict

risk for drought compare to 1.8pp for locust swarms.

These results provide evidence of a potential misspeci�cation of studies analyzing short-term im-

pacts of transitory economic shocks, if these have persistent indirect e�ects on outcomes of interest.

Studies of such shocks using speci�cations similar to Equation 2 and ignoring possible long-term

e�ects will generate biased short-term impact estimates to the extent the shocks have long-term

indirect impacts. This concern is a special case of contamination in estimated e�ects of treatment

leads and lags in settings with dynamic and heterogeneous treatment e�ects (Sun and Abraham,

2021), which can lead to errors in both magnitude and sign (Roth et al., 2023) as shown here par-

ticularly for the impacts of locusts swarms on violent con�ict risk. A large literature has studied

this limitation of TWFE estimators and proposes a variety of event study estimators to address its

limitations including those I use to estimate long-term e�ects of locust swarm exposure on con�ict

(Borusyak et al., 2024; Callaway and Sant'Anna, 2021; Cengiz et al., 2019; De Chaisemartin and

d'Haultfoeuille, 2024; Sun and Abraham, 2021).

Building on this literature and to provide intuition for the results in Table 7, I conduct simu-

lations estimating di�erent regression models under several scenarios of dynamic treatment e�ects

(Figure A3, Table A5). I show that sign errors for TWFE estimators assuming transitory treatment

e�ects are more likely when the true e�ect in the treatment period is small relative to e�ects in later

periods. The magnitude of the bias in the transitory e�ects estimator depends on the true imme-

diate e�ect and on the average of treatment e�ects in subsequent periods rather than on particular

dynamics of those e�ects. This is because �xed e�ects estimators compare di�erences in outcomes

in a given period against the average across other periods. Intuitively, there is also less bias in

transitory e�ects estimates if the e�ects of treatment do not persist for very long. Including lagged

treatment terms attenuates this bias under constant and decreasing long-term e�ects of treatment,

but aggravates it under increasing long-term e�ects.

Attention to these estimation issues in di�erence-in-di�erences settings has been rapidly increas-

ing (see A. Baker et al. (2025) for a recent guide for practitioners). Certain di�erence-in-di�erences

methods can also be applied in settings with repeated treatments, an important consideration for

shocks such as droughts or locust swarms which may recur in the same location over time. I abstract

away from that in this study�where such recurrence is rare in the sample period�by considering
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only the �rst exposure during the study period and de�ning absorbing treatment variables. Future

work could explore dynamic e�ects of agricultural shocks on con�ict while accounting for potential

repeated treatments.

9 Conclusion

Violent con�ict can have devastating consequences for economic and human development which are

the subject of signi�cant study even beyond the economics literature. This paper shows that expo-

sure to severe agricultural production shocks�both desert locust swarms and drought�signi�cantly

increases long-term risk of violent con�ict.

The results emphasize the limitations of individual-level con�ict models focusing primarily on

the role of changing opportunity costs of �ghting following a productivity shock. Exposure to locust

swarms does not cause the immediate onset of violent con�ict, as predicted under an opportunity

cost mechanism. An analysis of the timing of the main locust swarm exposure event in the sample

suggests this may be due to limited popular grievances or unrest in the study area during this

period. I �nd that long-term impacts of both locust swarms and drought are concentrated in

periods of civil con�ict�an indicator of heightened grievances that have escalated into violence�

due to other proximate causes, when the feasibility of �ghting and expected returns are likely to

be higher and costs are lower. This results echoes a few other studies (Berman and Couttenier,

2015; Buhaug et al., 2021) but has not been emphasized in the economics literature on climate

and con�ict, and has important implications for considering what areas are most likely to become

engaged in civil con�ict after it is triggered by some proximate cause.

I propose a permanent income e�ect from strategies to cope with the initial agricultural de-

struction reducing later productivity and opportunity costs of �ghting as a potential income-related

mechanism for long-run e�ects of locust swarm exposure on con�ict risk. Swarm exposure does not

persistently a�ect measures of agricultural productivity at the level of the 0.25◦ grid cells I ana-

lyze, but it reduces agricultural production area and there is suggestive evidence that it increases

out-migration. These results add to other work showing long-term adverse production and human

capital e�ects of locust swarm exposure and many studies showing long-term economic impacts of

natural disasters. Further research on long-term impacts of transitory economic shocks on house-

hold measures of productivity, labor supply, food security, and wealth would help further explore

the potential role of a permanent income mechanism.

The �ndings suggest additional future avenues of research in the literature on climate and

con�ict. I show that the methods typically used in this literature, which treat transitory climate

or weather shocks as only a�ecting con�ict risk in the short-term when the shock directly a�ects

agricultural outcomes, can result in biased estimates of short-term e�ects when the shocks have long-

term indirect impacts. New event study analyses could test the extent and patterns of long-term

impacts of other climate or economic shocks on con�ict risk. Although not a focus of this paper,

the lack of variation in the immediate impacts of precipitation and temperature deviations on
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violent con�ict risk by agricultural land cover cast further doubt on whether e�ects on agricultural

production are the primary mechanism. The association between climate and con�ict has been

demonstrated in a wide variety of settings but the mechanisms remain unclear (Burke et al., 2024;

Mach et al., 2020). A better understanding of the di�erent mechanisms is essential to determining

the appropriate policy responses. Analyses of long-term impacts of agricultural shocks on measures

of local inequality and on psychological factors could be particularly helpful in understanding both

income- and non-income-related mechanisms.

The economic and human costs of increased con�ict risk following severe agricultural shocks

highlights the importance of policy e�orts to respond to such shocks. Burke et al. (2024) �nd

robust evidence across studies that higher living standards reduce sensitivity of con�ict risk to

climate shocks. Additional research could explore whether policies that can promote resilience to

agricultural shocks also reduce con�ict risk, building on existing studies looking at cash transfers

(Crost et al., 2016), insurance (Sakketa et al., 2025), improved infrastructure (Gatti et al., 2021),

and work programs (Fetzer, 2020).

The results also have implications for estimates of the economic and social costs of desert locust

outbreaks. Past research on desert locusts has argued that limited impacts of outbreaks on aggregate

national measures of agricultural production may mean expensive locust monitoring and control

operations have limited net economic bene�ts (Jo�e, 2001; Krall and Herok, 1997), though others

have argued that local damages are extensive and motivate continued proactive locust control e�orts

(Showler, 2019; Zhang et al., 2019). A consideration of the broader long-term economic and social

impacts of agricultural destruction by locust swarms�notably increased vulnerability to violent

con�ict�could motivate greater investment in proactive locust monitoring and control, as well as

increased cross-country communication and collaboration in response to threats of locust swarms.

Beyond contributing to our understanding of the relationship between agricultural production

shocks and con�ict risk, the �ndings are also relevant for considering multilateral policy around

climate change mitigation and adaptation. Climate change is increasing the frequency and severity

of agricultural shocks, including by creating conditions suitable for desert locust swarm formation.

These shocks impose additional costs on society through their impacts on con�ict risk which should

be considered when weighing the costs and bene�ts of potential actions to reduce and respond to

risks from agricultural shocks.
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A Additional �gures and tables

Table A1: Summary statistics

Panel A: Yearly variables

Mean SD Min 50th 75th Max N

Any violent con�ict event - ACLED 0.02 0.14 0.0 0.0 0.0 1.0 557018
Any violent con�ict event - UCDP 0.01 0.10 0.0 0.0 0.0 1.0 557018
Any swarms in cell 0.00 0.07 0.0 0.0 0.0 1.0 557018
Any swarms within 100km outside cell 0.05 0.21 0.0 0.0 0.0 1.0 557018
Any swarms within 100-250km of cell 0.11 0.32 0.0 0.0 0.0 1.0 557018
Population (10,000s) 1.63 8.92 0.0 0.1 0.9 749.8 557018
Total annual rainfall (100 mm) 2.40 3.79 0.0 0.8 2.8 43.4 557018
Max annual temperature (deg C) 37.55 5.11 11.5 38.2 41.3 49.1 557018

Panel B: Fixed variables

Mean SD Min 50th 75th Max N

Any ACLED violent con�ict event in cell from 1997-2018 0.13 0.33 0.0 0.0 0.0 1.0 25435
Any UCDP violent con�ict event in cell from 1997-2018 0.07 0.26 0.0 0.0 0.0 1.0 25435
Any locust swarm in cell from 1985-2021 0.20 0.40 0.0 0.0 0.0 1.0 25435
Any locust swarm in cell from 1997-2018 0.09 0.29 0.0 0.0 0.0 1.0 25435
First exposed to locust swarm between 1997-2018 0.07 0.26 0.0 0.0 0.0 1.0 25435
First exposed to locust swarm in 2003-2005 upsurge 0.05 0.22 0.0 0.0 0.0 1.0 25435
Any locust swarm within 100 km from 1985-2021 0.78 0.41 0.0 1.0 1.0 1.0 25435
Any locust swarm within 100 km from 1997-2018 0.55 0.50 0.0 1.0 1.0 1.0 25435
Any cropland or pasture in cell 0.57 0.50 0.0 1.0 1.0 1.0 25435
Share of cell allocated to crops or pasture 0.23 0.32 0.0 0.0 0.4 1.0 25435
Any pasture in cell 0.56 0.50 0.0 1.0 1.0 1.0 25435
Share of cell allocated to pasture 0.18 0.27 0.0 0.0 0.3 1.0 25435
Any cropland in cell 0.31 0.46 0.0 0.0 1.0 1.0 25435
Share of cell allocated to crops 0.05 0.13 0.0 0.0 0.0 1.0 25435

Note: Observations are grid cells approximately 28×28km by year. The study period covers 1997-2018. Data on locust swarm
observations is available from the FAO Locust Watch for 1985-2021. Data on con�ict events are fron the ACLED and UCDP
databases. Data on population is from GPW (CIESIN, 2018). Data on precipitation and temperature are from WorldClim
(Fick and Hijmans, 2017). Values for land cover are for the year 2000 from Ramankutty et al. (2010).
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Table A2: Balance in cell characteristics by exposure to any locust swarm

All cells W/in 100km of any swarm W/in 100km of any swarm
No weights No weights Inverse exposure propensity weights

Control
Mean
(SD)

Treat
Di�.
(SE)

Control
Mean
(SD)

Treat
Di�.
(SE)

Control
Mean
(SD)

Treat
Di�.
(SE)

Population in 2000 (10,000s) 1.22 1.32∗∗∗ 1.65 0.90∗∗∗ 1.67 0.43
[6.99] (0.37) [8.67] (0.33) [8.71] (0.50)

Mean of cell nightlights 0.05 0.01∗∗ 0.05 0.00 0.05 0.00
1996-2012 (0-1) [0.04] (0.00) [0.05] (0.00) [0.05] (0.00)
Distance to national capital 707.37 -182.42∗∗∗ 586.82 -61.87∗∗ 586.45 17.59
(km) [405.76] (46.07) [357.73] (28.29) [358.35] (24.98)
Distance to nearest national 200.16 -40.97∗∗∗ 195.63 -36.45∗∗∗ 194.52 8.31
boundary (km) [151.74] (13.96) [147.84] (11.90) [147.70] (11.54)
Percent of cell covered by 4.69 0.83 5.83 -0.31 5.89 0.63
crop land in 2000 [13.12] (0.78) [14.48] (0.69) [14.55] (0.80)
Percent of cell covered by 17.43 11.03∗∗∗ 21.59 6.87∗∗∗ 21.79 -0.98
pasture land in 2000 [26.69] (2.40) [28.05] (2.16) [28.12] (1.59)
Percent of cell covered by 68.97 -9.98∗∗∗ 61.16 -2.16 60.76 0.98
barren area in 2009 [42.75] (3.68) [43.52] (3.04) [43.58] (2.73)
Percent of cell covered by 0.08 0.10 0.10 0.08 0.10 0.01
urban area in 2009 [0.75] (0.07) [0.88] (0.07) [0.89] (0.05)
Percent of cell covered by 6.80 -1.09 7.12 -1.42 7.20 -0.07
forest area in 2009 [17.00] (1.03) [16.15] (0.91) [16.22] (0.92)
Percent of cell covered by 2.01 1.49∗∗ 2.92 0.58 2.94 0.20
water area in 2009 [10.70] (0.61) [12.75] (0.61) [12.81] (0.53)
Mean annual max NDVI 0.23 -0.01 0.24 -0.02 0.24 0.01
(1997-2018) [0.21] (0.02) [0.20] (0.01) [0.20] (0.01)
Mean annual rainfall 1997-2018 2.42 0.15 2.68 -0.11 2.71 0.11
(100 mm) [3.80] (0.25) [3.76] (0.17) [3.77] (0.18)
Mean annual max temperature 37.63 -1.61∗∗∗ 36.70 -0.69∗ 36.67 -0.21
1997-2018 (deg C) [5.11] (0.45) [5.05] (0.37) [5.07] (0.38)
Mean of cell annual share of 0.09 -0.00 0.09 0.00 0.09 0.00
months with drought 1998-2014 [0.03] (0.00) [0.04] (0.00) [0.04] (0.00)

F = 5.00 F = 2.38 F = 0.64
Joint signi�cance p < 0.01 p < 0.01 p = 0.824

Note: The table shows results from separate bivariate regressions of baseline or mean cell characteristics on a dummy for being
exposed to a locust swarm during the study period. The rows indicate which dependent variable is used. The �rst set of columns
includes all cells while the second restricts the sample to cells within 100 km of any locust swarm observation from 1997-2021.
The third set of columns includes all cells but weights observations by the inverse of the estimated propensity to have been
exposed to a locust swarm during the study period. I include results of joint tests that there is no relationship between any
of the characteristics and swam exposure. Observations are grid cells approximately 28×28km by year. SEs clustered at the
sub-national region level are in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table A3: Event study estimates of impact of swarm exposure on di�erent con�ict outcomes

(1) (2) (3)
Violent con�ict

(ACLED)
Output con�ict

(ACLED)
Factor con�ict

(UCDP)

pre10 -0.006 -0.003 -0.007
(0.011) (0.005) (0.010)

pre9 -0.024∗∗∗ -0.009 -0.017∗∗

(0.008) (0.007) (0.007)

pre8 -0.006 -0.005 -0.006
(0.009) (0.007) (0.007)

pre7 0.004 -0.001 0.002
(0.008) (0.006) (0.009)

pre6 -0.007 -0.007 -0.002
(0.006) (0.006) (0.008)

pre5 0.000 -0.004 0.004
(0.008) (0.006) (0.010)

pre4 0.004 0.000 -0.002
(0.009) (0.006) (0.009)

pre3 0.005 0.000 0.003
(0.008) (0.007) (0.010)

pre2 -0.002 0.000 0.001
(0.007) (0.006) (0.008)

pre1 0.002 0.005 -0.001
(0.007) (0.007) (0.007)

tau0 0.000 0.002 0.001
(0.003) (0.002) (0.002)

tau1 0.003 -0.001 -0.001
(0.004) (0.003) (0.002)

tau2 0.009∗∗ 0.007∗∗ 0.006∗

(0.004) (0.003) (0.004)

tau3 0.009∗∗ 0.007∗∗ 0.004
(0.004) (0.003) (0.003)

tau4 0.015∗∗∗ 0.011∗∗∗ 0.003
(0.004) (0.003) (0.003)

tau5 0.013∗∗∗ 0.011∗∗∗ 0.008∗∗

(0.004) (0.004) (0.004)

tau6 0.005 -0.000 0.003
(0.004) (0.003) (0.003)

tau7 0.024∗∗∗ 0.018∗∗∗ 0.011∗

(0.009) (0.005) (0.007)

tau8 0.025∗∗∗ 0.021∗∗∗ 0.012∗∗∗

(0.009) (0.006) (0.004)

tau9 0.021∗∗∗ 0.021∗∗∗ 0.004
(0.007) (0.006) (0.004)

tau10 0.027∗∗∗ 0.034∗∗∗ 0.007∗

(0.009) (0.008) (0.004)

Total annual precipitation 0.004∗∗ 0.002∗ -0.000
(SDs) (0.002) (0.001) (0.001)

Max annual temperature (SDs) 0.012∗∗ 0.005 0.005
(0.005) (0.004) (0.004)

Population (10,000s) 0.010∗∗∗ 0.009∗∗∗ 0.003∗∗∗

(0.002) (0.002) (0.001)

Observations 295348 295348 295348

Note: The table shows the results of event study estimates of the impact of locust swarm exposure, with each column considering
a di�erent con�ict outcome. Estimated impacts in each time period are weighted averages across e�ects for swarm exposure
in particular years, calculated using the BJS estimator. Time period 0 is the year of �rst swarm exposure. Brackets represent
95% con�dence intervals using SEs clustered at the sub-national region level. All regressions include country-by-year and cell
�xed e�ects and controls for annual precipitation, maximum temperature, and population, and distance to capital-by-year �xed
e�ects. Observations are grid cells approximately 28×28km by year.
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Table A4: Average impacts of locust swarm exposure on di�erent con�ict types

(1) (2) (3)

Violent con�ict
(ACLED)

Output con�ict
(ACLED)

Factor con�ict
(UCDP)

Average e�ect of swarm 0.018∗∗∗ 0.014∗∗∗ 0.006∗∗∗

exposure (0.004) (0.003) (0.002)

Observations 301664 301664 301664
Outcome mean post-2004, no exposure 0.028 0.019 0.012
Proportional e�ect of exposure 0.626 0.752 0.510
Country-Year FE Yes Yes Yes
Cell FE Yes Yes Yes
Controls

Note: Column 1 is the same as Table 1 column 1, and the other two columns replicate this for di�erent con�ict outcomse. The
dependent variables are dummies for any con�ict event being observed in a cell in a year. See the note for Table 1 for more
detail on the estimation. Column 2 de�nes `output' con�ict as violence against civilians, riots, and looting from ACLED and
column 3 de�nes `factor' con�ict as violent con�ict events reported in the UCDP database (involving de�ned actors and at
least 25 fatalities in a year), following McGuirk and Burke (2020).
* p < 0.1, ** p < 0.05, *** p < 0.01
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Figure A1: Variation in swarm timing and location during study period, by region
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Note: The �gure identi�es the timing of swarm observations from 1997-2018 based on information on local crop calendars for
major crops. This timing is not considered in cells with no cropland. These seasons are used to de�ne timing of swarm exposure
used in Table 2.
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Figure A2: Impacts of exposure to locust swarms on economic outcomes over time
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B) Estimated cell
crop yield (kg/ha)

-100

0

100

200

300

A
ve

ra
ge

 e
ff
ec

t 
on

 c
on

fl
ic

t 
ri

sk

-10 -8 -6 -4 -2 0 2 4 6 8 10
Years since first swarm exposure

C) Estimated cell net
migration (per 1000 pop)
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Each panel replicates Figure 3 but considering a di�erent outcome as indicated in the panel title. See the �gure note for
Figure 3 for more detail.
NDVI is calculated from MODIS satellite imagery from 2000-2018 (Didan, 2015). I calculate average NDVI in each cell-month
based on 16-day NDVI observations, and then take the maximum of these values in each cell-year. The event study is
restricted to crop cells, where NDVI is a potential proxy for agricultural production. Crop-speci�c yield data at the cell
level are estimated by Cao et al. (2025)) for four main crops globally from 1997-2015. I consider the `main' crop in cells
with multiple crops as the highest-yield crop in the cell. Annual net cell migration for 2000-2018 is estimated by Niva et al. (2023).
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Table A5: Simulation: bias in estimates of short-term e�ects of shocks under di�erent dynamic
treatment e�ects

(1) (2) (3) (4) (5)

Immediate
e�ect only

Constant
5 year
e�ects

Constant
long-term
e�ects

Decreasing
long-term
e�ects

Increasing
long-term
e�ects

A. True e�ects:

Treatment during current year 0.500∗∗∗ 0.500∗∗∗ 0.262∗∗∗ 0.500∗∗∗ 0.025∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Treatment 1 year lag 0.000 0.500∗∗∗ 0.262∗∗∗ 0.475∗∗∗ 0.050∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Treatment 2 year lag 0.000 0.500∗∗∗ 0.262∗∗∗ 0.450∗∗∗ 0.075∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Treatment 3 year lag 0.000 0.500∗∗∗ 0.262∗∗∗ 0.425∗∗∗ 0.100∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Treatment 4 year lag 0.000 0.500∗∗∗ 0.262∗∗∗ 0.400∗∗∗ 0.125∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

B. Estimated transitory e�ects:

Treatment during current year 0.500∗∗∗ 0.431∗∗∗ 0.091∗∗∗ 0.336∗∗∗ -0.155∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Di�erence from actual treatment e�ect 0.000 0.069 0.171 0.164 0.180

C. Transitory e�ects w/ 1st di�erences:

Treatment during current year 0.500∗∗∗ 0.250∗∗∗ 0.131∗∗∗ 0.263∗∗∗ 0
(0.000) (0.000) (0.000) (0.000) (.)

Di�erence from actual treatment e�ect 0.000 0.250 0.131 0.237 0.025

D. Estimated lagged e�ects:

Treatment during current year 0.500∗∗∗ 0.500∗∗∗ 0.105∗∗∗ 0.380∗∗∗ -0.170∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Treatment 1 year lag 0.000 0.500∗∗∗ 0.105∗∗∗ 0.355∗∗∗ -0.145∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Treatment 2 year lag 0.000 0.500∗∗∗ 0.105∗∗∗ 0.330∗∗∗ -0.120∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Treatment 3 year lag 0.000 0.500∗∗∗ 0.105∗∗∗ 0.305∗∗∗ -0.095∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Treatment 4 year lag 0.000 0.500∗∗∗ 0.105∗∗∗ 0.280∗∗∗ -0.070∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

Di�erences from actual treatment e�ect 0.000 0.000 0.157 0.120 0.195

Observations 300000 300000 300000 300000 300000

Note: I simulate 10,000 observations across 30 periods, and randomly assign 20% to be treated in period 11. I de�ne the
outcome as taking a value of 0 for all units before period 11, and then vary the value based on di�erent possible dynamic
treatment e�ects. In column (1) treatment increases the outcome by 0.5 in the initial treatment period only. In column (2)
treatment increases the outcome by 0.5 in each of the �rst 5 treatment periods. In column (3) treatment increases the outcome
by 0.26 in all subsequent periods. In column (4) treatment increases the outcome by 0.5 in the �rst treatment period, but
the e�ect decreases linearly over all subsequent periods. In column (5) treatment increases the outcome by 0.025 in the �rst
treatment period, but the e�ect increases linearly over all subsequent periods. The evolution of the outcome over time is shown
in Figure A3. Patterns are similar with reversed signs if I simulate negative treatment e�ects. I estimate three treatment e�ect
models for each scenario which make di�erent assumptions about dynamic treatment e�ects. Panel A shows the results of event
study estimates of the true e�ects for the �rst 5 treatment periods. Panel B shows the results of TWFE estimates that assume
a transitory treatment that only a�ects the outcome in the initial treatment period. Panel C is similar to Panel B but includes
four lagged treatment indicators, assuming treatment e�ects only persist for �ve periods. All regressions include period and
unit �xed e�ects. SEs clustered at the unit level are in parentheses.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Figure A3: Simulation: evolution of outcome under di�erent dynamic treatment e�ects
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Note: This �gure shows the evolution of the simulated outcomes as described in the notes to Table A5.
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B Robustness

Figure B1: Alternative locust swarm exposure event study estimators
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The �gure shows event study impacts of locust swarm exposure on the risk of any violent con�ict estimated using di�erent
methods. `BJS 2021' refers to the Borusyak et al. (2024) method �rst introduced in 2021, `CS 2021' refers to Callaway and
Sant'Anna (2021), `CD 2024' refers to De Chaisemartin and d'Haultfoeuille (2024), `SA 2021' refers to Sun and Abraham
(2021), and `CDLZ 2019' refers to Cengiz et al. (2019). Time period 0 is the year of �rst swarm exposure. Brackets represent
95% con�dence intervals using SEs clustered at the sub-national region level. Observations are grid cells approximately
28×28km by year. All regression include cell and year �xed e�ects and no controls, in contrast to the main speci�cation which
uses BJS with cell and country-by-year �xed e�ects and controls, due to constraints in including these additional controls
in the Stata packages implementing some of the alternative estimators. I test the sensitivity of the main BJS estimates to
di�erent �xed e�ects and controls in Figure B5.
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Figure B2: Impacts of exposure to locust swarms on violent con�ict risk over di�erent time horizons
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B) 14 post-exposure years
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Each panel replicates Figure 3 but changes the number of time periods included as indicated in the panel title. See the �gure
note for Figure 3 for more detail.
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Table B1: Average impacts of exposure to locust swarms on violent con�ict risk by estimator

Outcome: Any violent con�ict event (1) (2) (3) (4) (5) (6)
BJS 2021 CS 2021 CD 2024 SA 2021 CDLZ 2019 TWFE

Average post-treatment e�ect 0.014∗∗∗ 0.014∗∗∗ 0.013∗∗∗ 0.015∗∗∗ 0.016∗∗∗ 0.017∗∗∗

(0.005) (0.005) (0.004) (0.004) (0.005) (0.006)

Observations 295348 301664 301664 301664 301664 301664

Note: The table shows the results from estimating average long-term impacts of swarm exposure on violent con�ict using
di�erent estimators. `BJS 2021' refers to the Borusyak et al. (2024) method �rst introduced in 2021, `CS 2021' refers to
Callaway and Sant'Anna (2021), `CD 2024' refers to De Chaisemartin and d'Haultfoeuille (2024), `SA 2021' refers to Sun and
Abraham (2021), `CDLZ 2019' refers to Cengiz et al. (2019), and `TWFE' refers to the two-way �xed e�ects speci�cation
shown in Equation 1. As in Figure B1, all regression include cell and year �xed e�ects and no controls, in contrast to the
main speci�cation which uses BJS with cell and country-by-year �xed e�ects and controls, due to constraints in including these
additional controls in the Stata packages implementing some of the alternative estimators. The results in column 1 using BJS
therefore di�er from those in Table 1 column 1 which follow the main speci�cation. The purpose of the table is to test sensitivity
of the estimates to the choice of estimator. Observations are grid cells approximately 28×28km by year. SEs are clustered at
the sub-national region level.
* p < 0.1, ** p < 0.05, *** p < 0.01

Table B2: TWFE average impacts of exposure to locust swarms on violent con�ict risk by land
cover

Outcome: Any violent con�ict event (1) (2) (3)

All land

Land =
Any crop or
pasture land

Land =
Any crop land

Exposed to any locust swarm 0.020∗∗∗ 0.005 0.006
(0.005) (0.006) (0.006)

Total annual precipitation 0.004∗∗ 0.002∗ 0.002∗

(SDs) (0.002) (0.001) (0.001)

Max annual temperature (SDs) 0.014∗∗ 0.012∗∗ 0.013∗∗

(0.005) (0.006) (0.006)

Population (10,000s) 0.009∗∗∗ 0.026∗∗ 0.007
(0.002) (0.011) (0.006)

Exposed to any locust swarm 0.017∗∗ 0.021∗∗

× Land=1 (0.008) (0.009)

Total annual precipitation (SDs) 0.002 0.003∗

× Land=1 (0.002) (0.002)

Max annual temperature (SDs) 0.001 0.000
× Land=1 (0.004) (0.005)

Population (10,000s) -0.018 0.002
× Land=1 (0.011) (0.006)

Observations 301664 301664 301664
Outcome mean post-2004, no exposure 0.028 0.028 0.028
Country-Year FE Yes Yes Yes
Cell FE Yes Yes Yes
Controls Yes Yes Yes

Note: The table replicates the results in Table 1 but using a two-way �xed e�ects (TWFE) estimator. Column 1 includes no
land cover interactions and the other two interact all right-hand side variables (except cell �xed e�ects) with cell land cover
dummies. The `Land=1' rows show the coe�cients for the interaction of right-hand side variables with cell land cover dummies
indicated in the column heading. The outcome mean for control cells is shown for post-2004 for comparison with exposure
impacts in the period after the majority of swarm exposure occurred. All regressions include country-by-year, cell, and distance
to capital by year �xed e�ects in addition to the controls shown. Observations are grid cells approximately 28×28km by year.
SEs are clustered at the sub-national region level.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Figure B3: Estimated coe�cients from Equation 1 with di�erent SEs

Exposed to any locust swarm

Total annual rainfall (100 mm)

Max annual temperature (deg C)

Population (10,000s)
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Cell Cell + Year
Region Region + Year
Conley 100km, 0 lags Conley 100km, 10 lags
Conley 500km, 0 lags Conley 500km, 10 lags

Note: The outcome variable is a dummy for any violent con�ict observed. The �gure shows 95% con�dence intervals for estimates
from Table B2 column (1) applying di�erent clustering for the SEs. Regions are clusters of sub-national administrative units
constructed so that each one includes at least 32 grid cells. Observations are grid cells approximately 28×28km by year.
Regressions also include country-by-year and cell FE.
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Figure B4: Sensitivity of locust swarm exposure event study results to di�erent speci�cations
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Note: Each event study replicates Figure 3 but changes some aspect of the speci�cation as indicated in the legend. Time period
0 is the year of �rst swarm exposure. Brackets represent 95% con�dence intervals using SEs clustered at the sub-national
region level. Observations are grid cells approximately 28×28km by year. All regressions estimate dynamic e�ects of swarm
exposure on violent con�ict risk using the BJS estimator, and include country-by-year and cell �xed e�ects and controls for
annual precipitation, maximum temperature, and population, and distance to capital by year �xed e�ects unless otherwise
stated. The year and region-year FE speci�cations replace country-by-year FE with FE at these levels, where region indicates
the same sub-national regions used in clustering the SEs. The propensity-year FE speci�cation adds estimated swarm exposure
propensity by year �xed e�ects; the estimation of these propensities is explained in the Empirical approach section.
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Figure B5: Sensitivity of average impacts of locust swarm exposure on violent con�ict risk to
alternative speci�cations

Main specification

Year FE

Region-Year FE

No controls

Pop. ctl only

Base weather ctl only

Cap. dist. ctl only

Alt. weather controls

+ 1 year weather lags

+ Ag land-Year ctls

+ Propensity-Year ctls

0 .01 .02 .03

Note: Each estimate and 95% con�dence interval is from a separate regression replicating Table 1 column 1 with a given
modi�cation. The dashed gray line indicates the main estimate from Table 1 column 1.
The main speci�cation includes controls for precipitation, temperature, and population at the cell-year level and cell,
country-by-year, and distance to capital-by-year FE. Each coe�cient is associated with a speci�c change in this speci�cation.
`Alt.' weather controls replace the rainfall and temperature measures from WorldClim with measures from CHIRPS and
ERA5, respectively. The bottom three speci�cations add additional controls: 1 year lags of precipitation and temperature, any
agricultural land-by-year FEs, and estimated swarm exposure propensity-by-year FEs.

Figure B6: Sensitivity of average impacts of locust swarm exposure on violent con�ict risk to
alternative samples

A) Variation in included cells
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B) Variation in included years
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Note: Each estimate and 95% con�dence interval is from a separate regression replicating Table 1 column 1 with a given
modi�cation. The dashed gray line indicates the main estimate from Table 1 column 1.
The main speci�cation includes all years from 1997-2018 and excludes cells more than 100 km from any swarm report and outside
the range of common support of estimated swarm exposure probability. Panel A shows results varying the set of included cells.
I �rst vary whether cells more than 100 km from any swarm report and outside the range of common support of estimated
swarm exposure probability are excluded. I then maintain the main sample restrictions but add additional restrictions. I drop
countries where Showler and Lecoq (2021) report insecurity prevented some locust control operations during the sample period
and cells that experienced violent con�ict during the 2003-2005 locust upsurge which might have prevented locust reporting.
Finally I drop countries in particular geographic regions.
Panel B shows results from dropping individual years when locust swarm exposure events occurred.
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Figure B7: Impacts of exposure to locust swarms on violent con�ict risk over time, imputing swarms
in high-propensity areas

A) Imputed swarm if propensity≥ 0.5
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B) Imputed swarm if propensity≥ 0.25
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Each panel replicates Figure 3 but changes the imputation of potential `missing' locust swarms. In each case, I assign a cell as
experiencing a locust swarm if its estimated propensity of exposure (over the whole study period) is above a certain level in
any year where a locust swarm was reported within 100 km of the cell. I then de�ne exposure based on the �rst year such a
swarm is imputed, and estimate the event study as previously. See the �gure note for Figure 3 for more detail on the estimation.
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Figure B8: Simulations of missing swarm observations

A) Betas, simulated swarms
in areas experiencing con�ict

near swarm report

B) Betas, simulated swarms
in any area near swarm report

C) Rejection of H0, simulated swarms
in any area near swarm report

Note: The �gures show the results from estimating Equation 1 in simulations imputing the presence of increasing shares of
unreported locust swarms in cell-years with a locust swarm reported within 100 km. For each share, I run 100 simulations
randomizing which cell-years are imputed with an unreported swarm, recalculating the swarm exposure treatment variable,
and estimating the average long-term impact of swarm exposure on violent con�ict risk. In Panel A, I only impute swarms
in cell-years both experiencing violent con�ict and within 100 km of a reported locust swarm, to simulate e�ects of missing
swarm reports in insecure areas. In Panels B and C, I impute swarms across all cell-years within 100 km of a reported locust
swarm. Panels A and B report the average estimated e�ect across all simulations by share of imputed swarms, along with a
95% con�dence interval for these estimates. Panel C reports the share of simulations where the p-value for the coe�cient on
swarm exposure is less than 0.05, by share of imputed swarms.
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Figure B9: Dynamic impacts of swarm exposure on violent con�ict risk at di�erent scales
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B) 1 degree cells
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Each panel replicates Figure 3 estimating dynamic impacts of locust swarm exposure of the risk of any violent con�ict event
using the BJS method at di�erent spatial scales. The main analysis uses 0.25◦ cells. When collapsing to larger cells I take the
maximum of the swarm exposure and violent con�ict variables and the mean of control variables across smaller cells within the
aggregate cell. All regressions include country-by-year and cell �xed e�ects and controls for annual precipitation, maximum
temperature, and population, and distance to capital by year �xed e�ects. SEs are clustered at the sub-national region level,
which is assigned based on the region of the majority of 0.25◦ component cells.

Table B3: Average impacts of swarm exposure on violent con�ict risk at di�erent scales

Outcome: Any violent con�ict event (1) (2) (3) (4) (5) (6)

Average e�ect of swarm 0.018∗∗∗ 0.025∗∗∗ 0.028∗∗∗ 0.131∗∗∗ 0.118∗∗∗ 0.096∗∗∗

exposure (0.004) (0.007) (0.011) (0.032) (0.033) (0.037)

Observations 301664 93940 30763 301664 93940 30763
Outcome mean post-2004, no exposure 0.028 0.067 0.128 0.028 0.067 0.128
Proportional e�ect of exposure 0.623 0.368 0.216
Country-Year FE Yes Yes Yes Yes Yes Yes
Cell FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes
Cell size (degrees) 0.25 0.5 1 0.25 0.5 1
Violent con�ict outcome Any Any Any SDs SDs SDs

Note: The table replicates the results in Table 1 column 1 at di�erent spatial scales, as presented in the note to Figure B9.
Columns 1-3 show absolute e�ects on a dummy for any violent con�ict while columns 4-6 show relative e�ects on the standard
deviation in the probability of any violent con�ict. The latter approach maintains comparability in e�ect sizes as the baseline
risk of any con�ict in a cell-year increase with cell size.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Table B4: Average impacts of direct and spillover exposure to locust swarms on violent con�ict risk

Outcome: Any violent con�ict event (1) (2)
All swarms 2003-2005 upsurge swarms

Exposed to swarm 0.020∗∗∗

(0.005)

Exposed to swarm w/in 100km 0.001
outside cell (0.003)

Exposed to swarm 0.018∗∗∗

(0.005)

Exposed to swarm w/in 100km 0.011∗

outside cell (0.006)

Observations 301664 301664
Country-Year FE Yes Yes
Cell FE Yes Yes
Controls Yes Yes

Note: The table presents results from estimating Equation 1 but including a spillover swarm exposure variable based on the
�rst year a swarm is outside the cell but within 100 km of a cell centroid. As with within-cell swarm exposure, spillover swarm
exposure is an absorbing treatment that takes a value of 1 in all years after the �rst exposure in the study period. Column 1
considers all swarm exposure events while column 2 focuses on the 2003-2005 upsurge. All regressions include country-by-year
and cell �xed e�ects and controls for annual precipitation, maximum temperature, and population, and distance to capital by
year �xed e�ects. SEs are clustered at the sub-national region level. Observations are grid cells approximately 28×28km by
year.
* p < 0.1, ** p < 0.05, *** p < 0.01
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Figure B10: Changes in con�ict environment and locust exposure event studies by country
A) Libya swarm and con�ict trends
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B) Libya upsurge event study

Upsurge
(97% of sample

exposure)

Pre-exposure mean
-0.006 (0.006)
Pre-exposure

Joint significance test
p-value: .357

Post-exposure mean
0.029 (0.011)

-.06

-.03

0

.03

.06

.09

.12

.15

.18

A
ve

ra
ge

 e
ff
ec

t 
on

 v
io

le
nt

 c
on

fl
ic

t 
ri

sk

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

Year

C) Burkina Faso swarm and con�ict trends
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D) Burkina Faso upsurge event study
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E) Egypt swarm and con�ict trends
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F) Egypt upsurge event study
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Note: The �gure replicates Figure 5 for Libya, Burkina Faso, and Egypt alone, which were selected because of the strong

concentration of locust exposure during the 2003-2005 upsurge. Con�ict in Libya began to increase in 2011 with the start of
the Arab Spring and the subsequent civil war. Armed Islamist violence escalated in Burkina Faso starting in 2016, with many

attacks by Al Qaeda and IS a�liates that established control over many rural parts of the country. Egypt underwent a
revolution in 2011 as part of the Arab Spring and experienced a coup d'etat in 2013 and continued higher levels of insecurity.
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Table B5: Robustness of drought estimates to changing number of consecutive drought months

Outcome: Any violent con�ict event (1) (2) (3) (4) (5) (6)

5 month
drought

5 month, Z =
Any crop or
pasture land

5 month, Z =
Any con�ict in
country outside

sub-region
6 month
drought

6 month, Z =
Any crop or
pasture land

6 month, Z =
Any con�ict in
country outside

sub-region

Average e�ect of shock 0.004∗∗ 0.001
exposure (0.002) (0.002)

E�ect of exposure, Z=0 -0.002 0.000 -0.003∗ 0.001
(0.002) (0.001) (0.002) (0.001)

E�ect of exposure, Z=1 0.008∗∗∗ 0.005∗∗ 0.004 0.001
(0.003) (0.003) (0.003) (0.002)

Observations 454986 454971 454986 455310 455300 455310
Outcome mean, no exposure 0.012 0.012 0.012 0.012 0.012 0.012
Country-Year FE Yes Yes Yes Yes Yes Yes
Cell FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes

Note: The table reproduces columns 4-6 of ?? changing the de�nition of what constitutes a drought. The main de�nition uses
at least 4 consecutive months of drought (observed in 3.6% of cell-years), and the alternative de�nitions presented here use
thresholds of 5 months (1.8% of cell-years) and 6 months (1.1%).
* p < 0.1, ** p < 0.05, *** p < 0.01

Figure B11: Event study impacts of drought exposure with 14 years of pre- and post-exposure
estimates
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The �gures replicates Figure 3 but changes the number of time periods included as indicated in the panel title. See the �gure
note for Figure 3 for more detail.
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C Desert locusts background

Desert locusts (Schistocerca gregaria) are a species of grasshopper always present in small numbers
in desert `recession' areas from Mauritania to India (Figure C1). They usually pose little threat
to livelihoods but favorable climate conditions in breeding areas�periods of repeated rainfall and
vegetation growth overlapping with the breeding cycle�can lead to exponential population growth.
For example, the 2019-2021 locust upsurge persisted in large part because of repeated heavy pre-
cipitation out of season due to cyclones, prompting explosive reproduction (Cressman and Ferrand,
2021). The 2003-2005 upsurge was initiated by good rainfall over the summer of 2003 across four
separate breeding areas. This was followed by two days of unusually heavy rains in October 2003
from Senegal to Morocco, after which environmental conditions were favorable for reproduction over
the following 6 months (FAO and WMO 2016).

Figure C1: Desert locust recession and breeding areas

Source: Symmons and Cressman (2001). The recession area is the area in which desert locusts are most commonly found. The
arrows indicate typical directions of downwind locust migration from breeding areas at di�erent times of year.

Unique among grasshopper species, after reaching a particular population density desert locusts
undergo a process of `gregarization' wherein they mature physically and form large bands or swarms
which move as a cohesive unit (Symmons and Cressman, 2001). Locust bands may extend over
several kilometers and alternate between roosting and marching, typically downwind (FAO and
WMO 2016). In this paper, I focus my analysis on gregarious swarms of adult desert locusts and
set aside observations of locusts in other phases.

Locust swarms form when bands of locusts remain highly concentrated when they reach the adult
stage and become able to �y. Swarms vary in their density and extent (Symmons and Cressman,
2001). The average swarm includes around 50 locusts per m2 with a range from 20-150, and can
cover under 1 square kilometers to several hundred (Symmons and Cressman, 2001). About half
of swarms exceed 50 km2 in size (FAO and WMO 2016), meaning swarms typically include over a
billion individuals.

The formation of swarms can lead to `outbreaks,' where locusts spread out from their largely
desert initial breeding areas. Locusts in swarms have increased appetites and accelerated reproduc-
tive cycles, and are thus particularly threatening to agriculture. The FAO distinguishes di�erent
levels of locust swarm activity (Symmons and Cressman, 2001). I use the terms `outbreak' and
`upsurge' interchangeably to refer to any locust swarm activity. Few locust swarms are observed
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outside of major outbreaks, as conditions favoring swarm formation tend to produce large swarms
which reproduce and spread rapidly and are very di�cult to control.

Figure C2: Desert locust observations by year

Source: Cressman and Stefanski (2016). Territories are generally individual countries.

The frequency of large-scale outbreaks has fallen since around the 1980s (Figure C2), in large
part due to increases in coordinated preventive operations (Cressman and Stefanski, 2016). But
climate change is expected to increase the risk of locust swarm formation and upsurges. Desert
locusts can easily withstand elevated temperatures and the increased frequency of heavy rainfall
events can create conditions conducive to population growth (McCabe, 2021; Qiu, 2009; Youngblood
et al., 2023).

As illustrated by Figure 1, locust swarms are not observed with any regularity over time or
space. Desert locusts are migratory, moving on after consuming all available vegetation, and out-
side of outbreak periods are ultimately restricted to desert `recession' areas. Unlike many other
insect species, therefore, the arrival of a desert locust swarm does not signal a permanent change
in local agricultural pest risk. Instead, the arrival of a swarm can be considered a locally and
temporally concentrated natural disaster where all crops and pastureland are at risk (Hardeweg,
2001). Figure C3 illustrates how exposure to a locust swarm does not signi�cantly a�ect the risk of
exposure over the following years, consistent with exposure being a function of quasi-random varia-
tions in wind patterns and �ight duration during swarm outbreaks. The only period in which cells
exposed to locusts are more likely to experience a later locust swarm is in the period immediately
after exposure, which re�ects that many locust outbreaks last more than one year.

Locust swarms are migratory and �y downwind from a few hours after sunrise to an hour or so
before sunset when they land and feed. Swarms do not always �y with prevailing winds and may
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Figure C3: Impact of swarm exposure on future exposure risk

0

.2

.4

.6

.8

1

A
ve

ra
ge

 e
ff
ec

t 
on

 s
w

ar
m

 e
xp

os
ur

e

-10 -8 -6 -4 -2 0 2 4 6 8 10
Years since first swarm exposure

Note: The �gure shows an event study of the impact of swarm exposure on the probability of having any locust swarm recorded
in a subsequent year for the study period 1997-2018. By construction, none of the exposed areas had any locust swarm recorded
in the years preceding their �rst exposure since 1990, and all had a locust swarm present in the year of exposure.

wait for warmer winds. Small deviations in the positions of individual locusts in the swarm can also
lead to changes in swarm �ight trajectory, making their movements di�cult to predict. Seasonal
changes in these winds tend to bring locusts to seasonal breeding areas at times when rain and the
presence of vegetation is most likely, allowing them to continue breeding (FAO and WMO 2016).

Patterns in swarm movements lead to local variation in locust swarm exposure. After taking o�,
swarms �y for 9-10 hours rather than landing as soon as they encounter new vegetation. A swarm
can easily move 100 km or more in a day even with minimal wind (Symmons and Cressman, 2001).
Consequently, the �ight path of a locust swarm will include both a�ected and una�ected areas, with
the a�ected areas determined by largely by patterns of wind direction and speed over time from the
initial swarm formation in breeding areas. Figure C4 illustrates the variation in areas a�ected by
locust swarms over space around Mali. Swarm reports are densely clustered in the breeding areas in
southern Mauritania where locust swarms reproduced in summer 2004. Outside of this area there
is considerable variation in where swarms were reported, with distances between reported swarms
over time consistent with typical �ight distances.

These movement characteristics inform e�orts to predict locust swarm movements, but these
remain highly imprecise. The desert locust bulletins produced monthly by the FAO include forecasts
of areas at risk of desert locust activity, but the areas described are quite large, often encompassing
several countries in periods with increased swarms. While breeding regions and the broad areas at
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Figure C4: Reports of locust swarms around Mali
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B) Year of �rst swarm exposure since 1990

12 10 8 6 4 2 0 2 4
Longitude

10

12

14

16

18

20

22

24

La
tit

ud
e

1990

1995

2000

2005

2010

2015

2020

Ye
ar

Note: The �gure illustrates the grid cells exposed to locusts swarms for the area around the country of Mali. Locust swarm
reports are from the FAO Locust Watch database. Panel A overlays these reports on a map of the share of agricultural land

area in each cell (Ramankutty et al., 2010), while Panel B illustrates the timing of �rst exposure to locust swarms.

risk over di�erent time periods can generally be predicted with some accuracy (Latchininsky, 2013;
Samil et al., 2020; Zhang et al., 2019), predicting speci�c local variation in swarm presence remains
a challenge due to the multiple factors in�uencing speci�c �ight patterns (FAO and WMO 2016).

While desert locusts can exhibit some preferences over types of vegetation, avoiding woody
plants, dry vegetation, and some toxic plants in particular, swarms of locusts in their gregarious
phase are less selective than solitary adults or nymphs (Despland, 2005; Despland and Simpson,
2005). The size of locust swarms and their polyphageous nature has led them to be considered
the world's most dangerous and destructive migratory pest (Cressman et al., 2016; Lazar et al.,
2016). A small swarm covering one square kilometer consumes as much food in one day as 35,000
people and the median swarm consumes 8 million kg of vegetation per day (FAO, 2023a), without
preference for di�erent types of crops (Lecoq, 2003.

The arrival of a locust swarm can therefore lead to the total destruction of local agricultural
output (Showler, 2019). During the last locust upsurge in 2003-2005 in North and West Africa, 100,
90, and 85% losses on cereals, legumes, and pastures respectively were recorded, a�ecting more than
8 million people (Brader et al., 2006; Renier et al., 2015). Damages to crops alone were estimated
at $2.5 billion USD and $450 million USD was required to bring an end to the upsurge (ASU, 2020).
Over 25 million people in 23 countries were a�ected during the most recent 2019-2021 upsurge and
damages were estimated to reach $1.3 billion (Green, 2022), with control e�orts�including treating
over 2 million hectares with pesticides�estimated to have prevented over $1 billion in damages
(Newsom et al., 2021).

An important result of the local variation in locust swarm damages during outbreaks is that
macro level impacts may be muted, since outbreaks occur in periods of positive rainfall shocks which
tend to increase agricultural production in una�ected areas. Several studies �nd that impacts of
locust outbreaks on national agricultural output and on prices are minimal, despite devastating
losses in a�ected areas (Jo�e, 2001; Krall and Herok, 1997; Showler, 2019; Thomson and Miers,
2002; Zhang et al., 2019). Chatterjee (2022) �nds that wheat yields are 12% lower on average in
Indian districts typically a�ected by desert locusts in years of locust outbreaks, in contrast to very
large decreases in the speci�c areas exposed to locust swarms in those years.

Farmers have no proven e�ective recourse when faced with the arrival of a locust swarm, though
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activities such as setting �res, placing nets on crops, and making noise are commonly attempted.
While these may slow damage they have little e�ect on locust population or total damages (Dobson,
2001; Hardeweg, 2001; Thomson and Miers, 2002). Desert locusts live 2-6 months and swarms
continue breeding and migrating until dying out due to a combination of migration to unfavorable
habitats, failure of seasonal rains in breeding areas, and control operations (Symmons and Cressman,
2001). The only current viable method of swarm control is direct air or ground spraying with
pesticides (Cressman and Ferrand, 2021). These control operations do not prevent immediate
agricultural destruction as they take some time to kill the targeted locusts, but will limit their
spread. The 2003-2005 locust upsurge ended due to lack of rain and colder temperatures which
slowed down the breeding cycle, combined with intensive ground and aerial spraying operations
which treated over 130,000 km2 at a cost of over US$400 million (FAO and WMO 2016).

Desert locust control is most e�ective before locust populations surge, and the FAO manages an
international network of early monitoring, warning, and prevention systems in support of this goal
(Zhang et al., 2019). While improvements in desert locust management have been largely e�ective in
reducing the frequency of outbreaks (as seen in Figure C2), many challenges remain. Desert locust
breeding areas are widespread and often in remote or insecure areas. Small breeding groups are easy
to miss by monitors, and swarms can migrate quickly. In addition, control operations are slow and
costly, resources for monitoring and control are limited outside of upsurges, and the cross-country
nature of the thread creates coordination issues. Insecurity may also limit locust control activities
(Showler and Lecoq, 2021).
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