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Abstract

Can transitory economic shocks affect long-term violent conflict risk? This paper studies this
question using data on con ict events and desert locust swarm exposure across 0.25° grid cells in
Africa and the Arabian peninsula from 1997-2018. A staggered event study approach shows that
swarm exposure increases the average annual probability of any violent conflict in a cell by 1.8
percentage points (64%) in subsequent years. Effects are driven by initial agricultural
destruction: exposure to swarms in nonagricultural areas or outside the main crop growing
season has no impact. Agricultural activity (but not average productivity) falls following swarm
exposure, indicating persistent indirect economic effects which may reduce opportunity costs of
fighting. The largest effects of swarms on con ict occur with a 7 year lag and there are no effects
in the year of exposure, inconsistent with predictions based on changes in opportunity costs of
fighting alone. Impacts of past exposure are concentrated in periods of social/political
disruptions driven by other proximate causes (e.g., the Arab Spring, civil war). This creates the
delay in the largest impacts of swarm exposure, and aligns with models of civil conflict
emphasizing the role of grievances in conflict onset. Patterns of long-term impacts on conflict
and heterogeneity by local unrest are similar for exposure to droughts, indicating the mechanisms
are not specific to locust swarms. These results add motivation for policies mitigating the risk of
agricultural shocks and promoting household resilience and recovery.
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1 Introduction

A large economic literature explores the impacts on conflict risk of transitory agricultural shocks
which do not permanently affect potential land productivity, such as weather and commodity price
fluctuations. This is an important policy concern given the prominence of agricultural livelihoods
in many of the areas most affected by civil conflict, the threat to agriculture posed by climate
change, and the severe economic and human harms of civil conflict (see e.g., Blattman and Miguel,
2010; Fang et al., 2020). Studies of this relationship focus on short-term impacts, and those that
analyze shocks to agricultural production are limited in their ability to identify causal mechanisms.*
This paper analyzes the dynamic long-term impacts of a severe transitory shock to agricultural
production—exposure to a desert locust swarm—on violent conflict, and tests for evidence of income-
related mechanisms.

Desert locusts are the world’s most dangerous and destructive migratory pest due to their po-
tential to form massive cohesive swarms (Cressman et al., 2016; Lazar et al., 2016), which effectively
constitute an agriculture-specific natural disaster. Climate change is creating conditions more con-
ducive to swarm formation (Qiu, 2009), potentially undoing progress from increased international
monitoring and control efforts in recent decades. The arrival of a locust swarm often leads to com-
plete destruction of agricultural production and other vegetation (Symmons and Cressman, 2001;
Thomson and Miers, 2002). Swarm flight patterns create quasi-random variation in the areas ex-
posed to agricultural destruction in a swarm’s migratory path, and their migratory nature means
that exposure to a swarm does not increase future risk from locusts. Outbreaks of desert locust
swarms in a given region are also relatively infrequent over the last several decades, permitting
analysis of long-term effects. These characteristics make locust swarms a useful natural experiment
for analyzing how transitory agricultural production shocks affect the long-term risk of conflict.

Using data on the location and timing of desert locust swarm observations from the Food and
Agricultural Organization of the United Nations (FAO) and of conflict events from the Armed
Conflict Location & Event Data Project (ACLED) and Uppsala Conflict Data Program (UCDP),
I estimate a model of conflict at the annual level for 0.25° (around 28x28km) grid cells between
1997-2018 across Africa and the Arabian peninsula.”’ As severe transitory economic shocks may
have persistent indirect effects which could affect conflict risk, beyond the initial direct impacts,
I define exposure to a locust swarm as an absorbing treatment: cells are considered treated in

all periods following exposure. I estimate average impacts of swarm exposure as well as dynamic

!Several studies find that shocks to agricultural prices increase conflict incidence (e.g., Dube and Vargas, 2013;
Fjelde, 2015; McGuirk and Burke, 2020; Ubilava et al., 2022). Impacts on agricultural productivity are speculated to
explain the widely-studied relationship between climate or weather shocks and conflict risk (see Burke et al. (2015),
Carleton et al. (2016), Dell et al. (2014), Hsiang and Burke (2013), Koubi (2019), and Mach et al. (2019) for reviews),
though weather may affect conflict through mechanisms other than agriculture and some studies find results that
are not consistent with effects through agricultural productivity (e.g., Bollfrass and Shaver, 2015; Sarsons, 2015) and
many reviews point to a need for more evidence on mechanisms.

2I include all countries where at least 10 locust swarms are reported during the sample period. Torngren Wartin
(2018) estimates short-term impacts of desert locusts on conflict in Africa using similar data. That paper focuses
on potential measurement issues which I discuss in Sections 4.2 and 6.2, and does not consider long-term impacts of
locust swarms or mechanisms that are the main contributions of this paper.



event study impacts using the Borusyak et al. (2024) estimator to account for staggered treatment
timing and potential heterogeneous effects, and test the sensitivity of the results to using other
difference-in-differences estimators.

Locust swarms increase the annual probability of any violent conflict event occurring in a 0.25°
grid cell by 1.8 percentage points (64%) on average in years after exposure to the swarm, compared
to unaffected areas in locust migration paths in the same country. I find no significant impacts of
locust swarms on violent conflict in the year of exposure or the following year but significant and
large increases in subsequent years up to 14 years after exposure. Impacts are entirely driven by
cells with crop or pasture land and by swarms arriving in crop cells during the main growing or
harvest season in particular, indicating that effects are driven by the initial agricultural destruction.
I find limited evidence of conflict spillovers outside of exposed cells, and the results are robust to a
variety of alternative specifications.

I interpret the results and evaluate income-related mechanisms through the lens of a commonly-
used model of individual occupation choice between different livelihood activities and engaging in
armed conflict (Chassang and Padro i Miquel, 2009; Dal Bé and Dal Bo, 2011; McGuirk and Burke,
2020). In the model, transitory agricultural shocks affect the short-term risk of conflict by changing
both the returns to engaging in agricultural production—the opportunity cost mechanism—and the
returns to fighting over agricultural output—the rapacity mechanism. I extend the model to allow
past agricultural production shocks to indirectly affect conflict risk through a wealth or permanent
income mechanism triggered by costly consumption smoothing strategies. This wealth effect can
decrease long-run productivity, leading to persistent reductions in the opportunity cost of fighting.
Drawing on models of grievance and conflict (Collier and Hoeffler, 2004) and building on selected
studies of short-term impacts of agricultural shocks in African countries (Berman and Couttenier,
2015; Buhaug et al., 2021), I allow for time-varying social or political tensions to affect the cost of
and the returns to fighting and propose a grievance mechanism affecting when a prior shock is more
likely to increase conflict incidence.

The results do not align with predictions under an opportunity cost mechanism alone. Locust
swarms have no significant effect on violent conflict in the year of exposure or the following year
despite this being the period when the opportunity cost effect from direct reductions in agricultural
productivity should be strongest. This is true for measures of both output conflict and conflict over
territory or factors of production, indicating that the null immediate impact is not due to offsetting
effects of the opportunity cost and rapacity mechanisms.

Long-term conflict risk also does not increase uniformly, with the largest effects on violent conflict
risk coming 7-10 years after swarm exposure. This lag aligns with the gap between the main locust
exposure event in 2003-2005 and the onset of various conflicts in the sample countries caused by
the Arab Spring, multiple civil wars, and the spread of terrorist organizations. In line with this and
models of grievance and conflict, I find that long-term impacts of past swarm exposure on violent
conflict are concentrated in periods of greater civil conflict and insecurity. This heterogeneity can

rationalize the null short-term impact on conflict, which shows that severe agricultural shocks need



not cause the onset of new conflict. Fighting is inherently a group activity motivated by some
particular goal or grievance, and individuals in areas exposed to locust swarms may have lower
opportunity costs and therefore be more likely to mobilize around proximate drivers of violent
conflict.

I directly test for evidence of persistent effects of swarm exposure on measures of economic
activity that could affect the long-term opportunity cost of fighting, in line with a permanent income
mechanism. I find no significant long-term effects on the Normalized Difference Vegetation Index
(NDVT) or on measures of local crop yields using remote sensing (Cao et al., 2025) or Demographic
and Health Survey (DHS) data (IFPRI 2020). This indicates no permanent decrease in agricultural
productivity, though analyses at the level of 0.25° cells may struggle to capture such effects when
the median locust swarm would affect just 6% of cell area. I do observe significant long-term
decreases in crop area cultivated and suggestive evidence of increases in out-migration, indicating
transitions away from agricultural work. Together with evidence from other studies using survey
data to show persistent adverse effects of locust swarms on agricultural production and measures of
human capital, these results suggest that a long-term decrease in the opportunity cost of fighting is
a plausible mechanism but more evidence from household-level analyses is needed to test it further.

Finally, to analyze whether the dynamic effects on conflict risk I estimate are specific to locust
swarms | test impacts of exposure to drought, measured using monthly Standardized Precipitation
and Evapotranspiration Index (SPEI) data. I find large time-varying increases in conflict risk that
are also driven by locations experiencing civil conflict in surrounding areas, implying that the same
mechanisms underly the effects of both types of agricultural shocks. The long-term increases in
conflict risk indicate that analyses defining shock ‘treatment’ as transitory and estimating short-
term impacts using two-way fixed effects (the main method in studies of climate or agricultural
shocks and conflict) are misspecified for shocks with non-zero average long-term effects. I show that
such specifications result in downward-biased estimates of the short-term impacts of both locust
swarms and drought on violent conflict, affecting the policy implications.

This paper makes several contributions to the literature. First, I add to our understanding of
the drivers of conflict (Bazzi and Blattman, 2014; Blattman and Miguel, 2010; Buhaug et al., 2021;
Collier and Hoeffler, 1998, 2004; Grossman, 1999; Miguel et al., 2004), and the roles of climate (Burke
et al., 2024; Mach et al., 2020) and shocks to agricultural production (Crost et al., 2018; Harari
and La Ferrara, 2018; McGuirk and Nunn, 2025; Von Uexkull et al., 2016) in particular. While
a relationship between climate and conflict has been repeatedly demonstrated, the mechanisms
driving this impact are not fully understood. Weather shocks affect a variety of economic and social
outcomes in addition to reducing agricultural labor productivity and agricultural output (Dell et al.,
2012, 2014; Mellon, 2022), but much of the literature has emphasized an opportunity cost mechanism

to explain increases in conflict risk.? The results of this paper indicate that the opportunity cost of

3Little attention is given to the rapacity mechanism in the climate-conflict literature. Studies showing evidence of
opportunity cost and rapacity mechanisms in agriculture have primarily explored impacts on conflict risk of changes
in global prices of agricultural goods (e.g., Dube and Vargas, 2013; Fjelde, 2015; McGuirk and Burke, 2020) rather
than shocks to local agricultural production. McGuirk and Nunn (2025) is an exception, analyzing impacts of drought



fighting mechanism alone cannot explain dynamic impacts of locust swarms and drought on conflict
risk over time. Similar to Buhaug et al. (2021)’s analysis of short-term effects of drought on conflict
but considering longer-term dynamics, 1 highlight the importance of grievances and insecurity in
determining when adverse effects of past shock exposure may lead to violent conflict.

Second, I contribute to a broader literature on the dynamic long-term impacts of environmental
shocks and natural disasters. Many papers have explored how adverse environmental shocks can
have persistent effects on poverty and well-being (Baseler and Hennig, 2023; Carter and Barrett,
2006; Carter et al., 2007; Lybbert et al., 2004). Studies of the impacts of agricultural production
shocks on conflict have focused on the short-term, with the exception of Narciso and Severgnini
(2023) who show that individuals in families more affected by the Great Irish Famine were more
likely to participate in the Irish Revolution decades later.* More generally, the evidence on long-
term impacts of disasters such as hurricanes and droughts is limited, inconclusive, and focused on
a small number of outcomes (see Botzen et al. (2019) and Klomp and Valckx (2014) for reviews). I
study dynamic impacts of desert locusts swarms—an extreme shock to agricultural production akin
to a natural disaster—on conflict risk and test whether patterns are consistent with an opportunity
cost mechanism, and find similar results when considering exposure to drought. The dynamic long-
term impacts on conflict risk imply that studies estimating transitory short-term impacts of severe
economic shocks may be biased, even if the direct effects of those shocks are temporary.

Third, this paper adds a new dimension to studies on the economic impacts of agricultural
pests (Oerke, 2006), including desert locusts (see e.g., Thomson and Miers, 2002), and builds on a
small literature on the long-term impacts of pest shocks (Ager et al., 2017; R. Baker et al., 2020;
Banerjee et al., 2010). The range of many agricultural pests is expanding due to climate change
and globalization, and—though locust outbreaks have become less frequent in recent decades due
to increased monitoring—desert locusts are ideally situated to benefit from climate change (Qiu,
2009). A small recent body of research links locust data with survey data and finds that locust swarm
exposure adversely affects long-term education (Asare et al., 2023; De Vreyer et al., 2015), health
(Conte et al., 2023; Gantois et al., 2024; Le and Nguyen, 2022; Linnros, 2017), and agricultural
production (Marending and Tripodi, 2022) outcomes, but I am the first to study long-term impacts
of a pest shock on conflict and explore potential mechanisms. The impacts of locust swarms on
long-term economic activity and conflict risk should be considered in determining policy around

desert locust prevention and control.

on conflict between pastoralists and farmers.

“To my knowledge, no other study has explored long-term impacts on conflict risk of a transitory negative shock
to agricultural production. Crost et al. (2018) and Harari and La Ferrara (2018) estimate effects of weather shocks on
conflict over 2 and 5 years. Iyigun et al. (2017) consider long-run effects on conflict risk of a positive and permanent
agricultural productivity shock from the introduction of the potato to the Eastern Hemisphere.



2 Background: Desert locusts

Desert locusts (Schistocerca gregaria) are a species of grasshopper always present in small numbers in
desert ‘recession’ areas from Mauritania to India.® They usually pose little threat to livelihoods but
favorable climate conditions in breeding areas—periods of repeated rainfall and vegetation growth
overlapping with the breeding cycle—can lead to exponential population growth. Unique among
grasshopper species, after reaching a particular population density locusts undergo a process of
‘gregarization’ wherein they mature physically and begin to move as a cohesive unit (Symmons and
Cressman, 2001), with adult winged locusts forming large mobile swarms. When swarms migrate
away from breeding areas and affect multiple countries, this is referred to as an outbreak or upsurge.
Climate change is expected to increase the risk of desert locust swarm formation and upsurges, as
these locusts can easily withstand elevated temperatures and the increased frequency of heavy
rainfall events can create conditions conducive to population growth (McCabe, 2021; Qiu, 2009;
Youngblood et al., 2023).

Desert locust swarms vary in density and extent, but the average swarm covers tens of square
kilometers and includes billions of locusts (Symmons and Cressman, 2001). About half of swarms
exceed 50 km? in size (FAO and WMO 2016). The size of swarms is what makes them so destructive.
A small swarm covering one square kilometer consumes as much food in one day as 35,000 people and
the median swarm consumes 8 million kg of vegetation per day (FAO, 2023a), without preference
for different types of crops (Lecoq, 2003). The arrival of a swarm can lead to the total destruction
of local vegetation (Symmons and Cressman, 2001; Thomson and Miers, 2002). For example,
during the 2003-2005 locust upsurge in North and West Africa, 100, 90, and 85% losses on cereals,
legumes, and pastures respectively were recorded, affecting more than 8 million people and leading
to 13 million hectares being treated with pesticides (Showler, 2019).

Extensive locust monitoring and control operations are conducted in countries at regular risk
from locust swarms. These are insufficient to prevent all upsurges but can help limit their spread
and damages. These activities and knowledge of desert locust breeding patterns and swarm flight
characteristics also inform efforts to predict locust swarm formation and movements, but forecasts
remain highly imprecise (Latchininsky, 2013). Even given such information, farmers have no proven
effective recourse when faced with the arrival of a locust swarm; activities such as setting fires
or placing nets on crops or to capture locusts may slow damage but have little effect on locust
population (Dobson, 2001; Hardeweg, 2001; Thomson and Miers, 2002). The only current viable
method of swarm control is direct spraying with pesticides, which can take days to have effects as well
as being slow and costly to organize and requiring robust locust control infrastructure (Cressman
and Ferrand, 2021). Farmers in affected areas report viewing locust swarms as an unpredictable
natural disaster that is the government’s responsibility to address (Thomson and Miers, 2002).

Households exposed to locust swarms use a variety of measures to cope with the adverse food

security and livelihood effects. Locusts may be eaten if they have not been sprayed with pesticides,

% Additional detail on desert locusts is included in Appendix C. Any time I use ‘locusts’ in this paper I am referring
exclusively to desert locusts.



but in most cases this is unlikely to substitute for lost production. In addition to seeking help
from social networks and food aid, households commonly report selling animals and other assets,
consuming less food, sending household members away, taking loans and cutting expenses, and
consuming seed stocks as coping strategies (Thomson and Miers, 2002). A swarm exposure shock
therefore represents a shock to income and household wealth as well as a shock to agricultural
productivity in the year of exposure.

Figure 1 displays the locations of desert locust swarm observations recorded in the FAO Locust
Watch database from 1985 (the first year they were recorded) to 2021, for the area of interest for
this study.® As illustrated by the figure, nearly all locust swarms are observed during periods of

major upsurges.

Figure 1: FAO Locust Watch swarm observations by year

1085 1987 1989 1991 1993 1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015 2017 2019 2021
Year

Note: Map created by author using locust swarm records in the FAO Locust Watch database. Each dot represents the location
of a single locust swarm observation, and the color indicates the year of the observation.

The characteristics of desert locust swarms make them a useful natural experiment for analyzing
the long-term impacts of agricultural production shocks on the risk of conflict and testing income-
related mechanisms. First, the timing of upsurges and patterns of swarm flight create quasi-random
temporal and local variation in swarm exposure. Locusts swarms are migratory and fly 9-10 hours
per day, generally downwind, easily moving 100 km or more per day even with minimal wind (FAO

and WMO 2016). Conditional on being in the migratory path during an upsurge, swarm flight

5Desert locust swarms also affect other countries in the Middle East and South Asia, but not during the time
period of this study.



patterns create quasi-random variation in exposure as some areas in the flight path are flown over
and spared any damages.” The arrival of a swarm also does not change future risk (Figure C3 shows
this empirically), so the direct shock to agricultural production is transitory even if indirect effects
may persist.

Second, the arrival of a swarm is effectively a locally and temporally concentrated natural
disaster affecting crops, pasture, and other vegetation (Hardeweg, 2001), but not directly affecting
other aspects of the economy. This contrasts with temperature and precipitation shocks which may
affect infrastructure or physiology as well as agricultural production. Third, the level of damage to
agriculture from swarms and lack of tools for farmers to prevent damages imply severe reductions
in agricultural production. This increases the potential for persistent adverse effects on well-being

due to efforts to cope with the shock, and therefore for persistent effects on conflict risk.

3 Conceptual framework

Weather affects the economy and society through multiple channels (Dell et al., 2012, 2014; Mellon,
2022), which is part of why recent reviews highlight the need for more research into the mechanisms
driving the relationship between weather and conflict (Burke et al., 2024; Mach et al., 2020). One
key mechanism is effects on agricultural production, but other studies have pointed to physiological,
psychological, and infrastructural effects of weather shocks as also helping to explain impacts on
conflict (Baysan et al., 2019; Burke et al., 2024; Carleton et al., 2016; Chemin et al., 2013; Dell
et al., 2014; Hsiang and Burke, 2013; Sarsons, 2015; Witsenburg and Adano, 2009). These channels
may be important in determining the effect of agricultural shocks on conflict risk (Burke et al.,
2024), but for the purpose of this paper I focus on testing mechanisms operating through effects on
agricultural production and income. This seems appropriate for the case of desert locust swarms
which do not have direct effects on infrastructure or human physiology, though effects on institutions
and human psychology may be important and a subject for future study.

An important set of models in the economics literature on agricultural shocks and intergroup
conflict uses an occupational choice framework (as in French and Taber, 2011; Heckman and Honore,
1990; Roy, 1951) where actors allocate their labor between productive activities and fighting.®
Chassang and Padro i Miquel (2009) develop a bargaining model of conflict where groups allocate
labor to crop production or fighting over land, and Dal B6 and Dal B6 (2011) model individuals
choosing between a labor-intensive sector, a capital-intensive sector, and an ‘appropriation’ sector
fighting over output. McGuirk and Burke (2020) develop this latter model to allow both factor
and output conflict and incorporate consumers who may also engage in fighting. These models
emphasize how a shock to labor productivity in a given sector affects both the opportunity cost
of engaging in conflict for individuals in that sector, as well as the returns to capturing output

or production factors in that sector. These are the opportunity cost and rapacity mechanisms,

"Figure C4 illustrates the local and temporal variation in exposure to swarms for the area around Mali.
8These models follow an early application by Becker (1968), who uses a similar setup to model interpersonal
conflict such as theft.



respectively.

In this section I present a simple streamlined model of occupational choice drawing on these
models but allowing for the possibility of dynamic long-term effects of a transitory productivity
shock. I follow Dal B6 and Dal B6 (2011) and others in treating fighting as an individual/group
decision, rather than Chassang and Padré i Miquel (2009) and others who present conflict as a
failure of a bargaining process between groups. This decision simplifies the model and provides
a useful framework for presenting income-related mechanisms I use the model to build intuition
and generate testable hypotheses about the effects of agricultural shocks on conflict. The objective
of these tests is to evaluate whether empirical effects are consistent with the opportunity cost
mechanism promoted in much of the literature on agricultural shocks and conflict, or whether other

mechanisms are needed to explain dynamic effects over time.

3.1 Model

In the model, individuals in each time period allocate one unit of labor L to either agricultural
production, nomn-agricultural work, or violent conflict to maximize total net income I. Violent
conflict is therefore treated as a potential occupation with appropriable returns. I set aside other
types of objectives for engaging in intergroup conflict, though these could be considered as also
generating indirect economic returns. Returns to all activities are affected by individual and loca-
tion characteristics X such as land quality, level of education, fighting ability, and local economic
development.

Net returns to agricultural production FA(LA,S, W, X) are affected by adverse agricultural

shocks S, with % < 0 and 8;5; < 0. A larger S, such as a drop in international crop prices or a
severe drought, therefore reduces the returns to agricultural labor—the opportunity cost mechanism:
producers have less to lose by engaging in conflict. At the same time, lower agricultural prices or
output reduce the returns to predatory attacks: bandits or looters have less to gain from fighting.
Dube and Vargas (2013) refer to this as the rapacity mechanism. These mechanisms are not unique
to agricultural shocks, as they are also discussed in earlier work on the economic drivers of conflict
more generally (Collier and Hoeffler, 1998, 2004; Grossman, 1999).

Prior research models transitory agricultural shocks—which only directly affect returns to la-
bor in the period they occur—as having only temporary effects on conflict, as there is no direct
persistent effect on agricultural productivity. The immediate shock income could have persistent
effects, however, as most agricultural households in developing countries lack insurance and have
constrained access to credit. Strategies to smooth consumption following an income shock, such as
selling animals and other assets, taking loans, reducing food, health, and education spending, and
sending members away reduce household physical and human capital (e.g., de Janvry et al., 2006;
Dercon and Hoddinott, 2004; Dinkelman, 2017). The resulting reductions in wealth mean transitory
shocks can have persistent impacts on productivity (Dercon, 2004; Donovan, 2021; Hallegatte et al.,
2020; Hoddinott, 2006; Karim and Noy, 2016). I therefore propose a wealth or permanent income

mechanism whereby a transitory negative shock indirectly but persistently reduces productivity



through direct effects on productive assets, and affects conflict risk by persistently reducing the
opportunity cost of fighting.

I incorporate this into the model by making agricultural production depend on wealth W with
% > 0, where wealth broadly includes human, physical, and financial capital. Wealth in period ¢ is
weakly increasing in income [ from activities in period t—1. As agricultural shocks decrease income,
this creates an indirect relationship between past agricultural shocks S;_s and agricultural produc-
tion in period ¢, where s € [1, 7] for some 7. We can write FA = FA(LP, Sy, Wie({Si—s}7_1), X4)),
with

Net returns to non-agricultural work FV (LY, X, W) are based on the most productive activity

86;{: < 0 capturing the possibility of long-term effects of a transitory agricultural shock.
available outside of own agricultural production, including migrating to work. The highest returns
available depends on individual and location characteristics X and wealth W. As a simplifying
assumption, I suppress the direct dependence of non-agricultural returns on S. Returns to non-
agricultural work thus set a lower bound on how far the opportunity cost of fighting may fall
following a negative agricultural shock. With % > 0, FV will be weakly smaller for individuals
primarily engaged in agriculture that experienced a past agricultural shock due to the permanent
income mechanism.

Finally, an individual ¢ can also decide to join in armed conflict against targets J which may
include individuals, enterprises, or organizations of different types including the government. These
targets may be within the same broadly-defined location as ¢ or in neighboring locations, and may
experience the same or different agricultural shocks. The aim of the violent conflict may include
both capture of outputs (rapacity) or attempts to capture and control factors of production, such as
land or territory. I acknowledge that violent conflict may have other direct objectives but to simplify
the model assume that all of these objectives can be represented as permitting more control over
resource flows from production outputs or factors.

The potential net returns to fighting are FC (LY, X;, Wi{l;,W;, X;}jes). The costs of fighting
depend on 4’s resources W; and local context X;, while the probability of successfully capturing
resources depends on these factors as well as characteristics of targets X;. Costs of fighting are
incurred with certainty and include economic, social, and emotional costs as well as risk of injury
or death. These costs make fighting sub-optimal for most individuals in most time periods. An
important variable in X;; is whether there is preexisting mobilization against outside targets. In
practice, individuals are unlikely to engage in violent conflict alone, as such fighting generally
involves organized armed groups which recruit members and pay them a wage or share of the
returns from victory (Collier and Hoeffler, 2004; Grossman, 1999). Prior mobilization of groups
that could engage in armed conflict will reduce the costs to the individual of fighting, in multiple
dimensions (financial, social, psychological). Mobilized groups will likely also have or perceive a
greater likelihood of engaging in violent conflict successfully.

Heterogeneity in the presence of mobilized groups is likely to be important in determining
effects of an agricultural shock. Buhaug et al. (2021) note that opportunity cost models can explain

economic motives for engaging in conflict but not when these motives actually translate into action.



Building on Collier and Hoeffler (2004), they propose a model of civil conflict that predicts an
income shock to increase violence primarily in a context of collective grievances. In line with this
model, they find that drought shocks do not in general increase the risk of rebellion of affected ethnic
groups, but do increase this risk among marginalized ethnic groups more dependent on agriculture.
The assumption is that high levels of local grievances foster mobilization of groups against the
object of the grievances, and that these groups can at times resort to violent conflict to achieve
their objectives. An agricultural shock itself may contribute to grievances by for example increasing
inequality, but many other factors unrelated to the shock also contribute to grievances, and I abstract
away from these underlying causes. Following this logic, I propose a grievance mechanism creating
variation in when an agricultural shock may increase the risk of conflict by lowering the threshold
to which the opportunity cost of fighting must fall to make switching to fighting optimal.

The potential returns to fighting depend on the incomes (production output), wealth (factors

C
of production), and characteristics of the individuals in J. With ggjt_t < 0, agricultural shocks
S; for individuals j € J decreasing the income available to capture and therefore reduce conflict

C
risk through the rapacity mechanism. With agﬁ_ < 0 (the permanent income mechanism), past

agricultural shocks to individuals 5 € J will also resduce conflict risk by decreasing both the output
and the factors that ¢ can capture.

The individual’s problem in period ¢ can be presented as choosing their labor allocation L;;
to maximize income I;; given some current and past shock realizations S;, S;. For simplicity and
intuition I ignore uncertainty in returns and suppose that decisions are made (or equivalently,
updated) after the agricultural shocks in the period are realized.

Lamax Ly =FALL Sits Wit ({Sip—s3om1)s Xig) 4+ FN (L% Wit ({Si—s}im1)s Xit)
i 3 it

1,67,
+ FOLE,, Xty Wi AL, Wi ({S0—sYomr) Xt Hie)
subject to Ly € {0,1},  F(0,.) =0, and » LY =1for O € {A,N,C}
O

OFA OFA OFC¢ OFC¢

< 05 < 0; < 0; <0
9Six 7 0Sip—s | 0Sjy 7 0Sji—s

This yields

L¢, =1 FO, X0, Wi, AL, Wya({Sji—s}im1)s Xja }e)
> max(F4(1, Sity Wis({Sit—s}r_1), Xit), FN (L, Wi s ({Sii—s}7_1), Xit))

In words: individual ¢ chooses to engage in violent conflict if the net returns from fighting exceed

their opportunity cost—the highest net returns they could receive from choosing another occupation.

3.2 Testable hypotheses

In general, the effect of a negative agricultural shock on the decision to fight is ambiguous, par-

ticularly if there is a strong positive correlation between shocks over space as in most agricultural
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shocks. At the same time as agricultural producers’ opportunity cost of fighting is reduced, the
decrease in local agricultural production makes conflict over output (i.e., banditry) less attractive.
For transitory agricultural shocks which do not have a permanent direct effect on local agricultural
productivity, the value of factors of production—Iland in particular—should be less affected.® In
line with this, the literature generally finds that the opportunity cost mechanism dominates for
shocks that temporarily reduce agricultural returns, increasing conflict risk, though the rapacity
cost mechanism is sometimes found to dominate for shocks that increase agricultural returns.

These considerations imply two testable predictions:

1. If the opportunity cost mechanism dominates, the local risk of violent conflict should increase

immediately after shock exposure.

2. If the rapacity mechanism offsets the opportunity cost mechanism, this should attenuate short-
term effects on measures of violent conflict, with relatively more attenuation for immediate

conflict over output than for conflict over factors.
The long-term effects of past agricultural shocks S;;—s on the decision to engage in conflict in

period t also involve offsetting mechanisms. The permanent income effect persistently decreases
production, reducing both the long-term opportunity cost of fighting and the returns to predatory
attacks. Results from literature on short-term effects of adverse agricultural production shocks
showing the opportunity cost mechanism typically dominates suggests that on net the permanent
income mechanism should increase long-term conflict risk through its effects on the opportunity
cost of fighting. Dynamic effects will depend on whether affected areas are able to recover over
time. Assuming the direct production shock is more severe than subsequent production decreases
under the permanent income mechanism, immediate effects should be larger than long-term effects,
all else equal.

Persistent effects through a permanent income mechanism should be more likely for more severe
shocks. Several papers have documented persistent effects of locust swarms on outcomes which could
influence productivity and therefore the opportunity cost of fighting. Studies using the Demographic
and Health Surveys (DHS) show that young children exposed to locust swarms are more likely to
drop out of school (Asare et al., 2023) and achieve lower educational attainment (De Vreyer et
al., 2015), and also have lower height-for-age (Conte et al., 2023; Gantois et al., 2024; Le and
Nguyen, 2022; Linnros, 2017) when they are older. Such human capital effects of swarm exposure
could decrease permanent labor productivity. More directly, Marending and Tripodi (2022) find
that agricultural profits of households in parts of Ethiopia exposed to locust swarms in 2014 are
20-48% lower two harvest seasons after swarm arrival. This indicates a persistent decrease in
agricultural productivity despite the fact the swarms have migrated and are no longer directly
affecting productivity. Long-term effects on productivity and wealth should be directly observable

if this is the mechanism through which a past shock affects current conflict.

9Transitory shocks may have some effect on the returns to factors if they affect individuals’ ability to productively
utilize factors or if they affect expectations about future productivity. Shocks that have direct permanent productivity
effects, for example through soil erosion or other land degradation, would have larger effects on the returns to factors.
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The model therefore suggests three more testable predictions for long-term impacts of a transi-

tory agricultural shock on conflict risk:

3. If long-term opportunity cost effects under the permanent income mechanism dominate, we

should observe persistent increases in conflict risk.

4. Assuming the initial direct production shock is more severe than the subsequent indirect effects
on production, increases in conflict risk should be largest in the periods immediately after the
shock.

5. If the permanent income mechanism drives long-term effects on conflict risk, we should observe

long-term average reductions in measures of productivity following the initial shock.
Since violent conflict is not the norm in most locations and periods, it implies the returns are

generally low. While there is evidence that agricultural shocks cause the onset of new violent
conflict immediately following the shock, it is not clear when a negative productivity shock will
lead an individual to switch from another activity to fighting. The importance of local conditions
in determining the costs and returns of fighting mean that we should expect heterogeneity in the
effects of an agricultural shock on conflict risk. A reduction in the opportunity cost of fighting is
more likely to increase the risk of violent conflict when the costs of forming or joining armed groups
are lower or the returns to such engagement are higher. This implies that dynamic impacts of an
agricultural shock on conflict risk should be greater in periods of heightened local grievances and
insecurity when groups are already mobilized around particular causes. Long-term effects under
this mechanism require persistent effects of the shock on measures of productivity or well-being.

This consideration motivates a final testable prediction:

6. If grievance is an important mechanism, the dynamic impacts of a transitory shock on violent
conflict should be concentrated in periods of heightened grievance. As grievances can be hard
to measure, I consider measures of popular unrest or civil conflict which indicate grievances

that have escalated to a high level.

4 Data

The Locust Watch database (FAO 2023) catalogs observations of desert locust swarms as well as
smaller concentrations of locusts from 1985 to 2021.'0 1 consider only data on locust swarms,
which pose the greatest threat to agriculture and whose flight patterns create local variation in
exposure. The Locust Watch data include latitude, longitude, and date of swarm observations.
Locust observations are recorded by national locust control and monitoring officers on the ground,
but incorporate reports from agricultural extension agents, government officials, and other sources.
Local farmer scouts are also often trained in locust monitoring and reporting (Thomson and Miers,
2002).

107 Jast retrieved data from the Locust Watch database in 2023. As of Spring 2025, the data on desert locust
presence appear to no longer be publicly available.
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Data on conflict events come from the Armed Conflict Location & Event Data Project (ACLED)
database (Raleigh et al., 2010). The database records the location, date, actors, and nature of
conflict events globally starting from 1997 by compiling and validating reports from traditional media
at different levels, from institutions and organizations, from local partners in each country, and from
verified new media sources. The database includes many types of events including protests, riots,
and various conflict-related strategic developments, but I focus on events categorized by ACLED
as “violent conflict” battles, explosions, and violence against civilians.!' As an alternative conflict
type, I follow McGuirk and Burke (2020) in constructing a measure of output conflict (i.e., banditry)
using ACLED records of violence against civilians, rioting, and looting. Such smaller-scale output
conflict aligns well with the modeling of violent conflict as an occupational choice, and motivates
using ACLED as the main source of conflict data.

For robustness, I also consider conflict data from the Uppsala Conflict Data Program (UCDP;
Sundberg and Melander, 2013). The UCDP database uses similar sources as ACLED but goes
back to 1989 and only records conflicts involving at least one “organized actor” and resulting in
at least 25 battle-related deaths in a calendar year. The ACLED database has no organized actor
or minimum death threshold requirements. The UCDP database has the advantage of being less
subject to underreporting bias: some research has shown that events with no fatalities—including
many of the types of ACLED violent conflict events I consider—suffer from more underreporting
(Croicu and Eck, 2022; Eck, 2012). While UCDP captures a different type of violent conflict from
ACLED, it therefore presents a useful check of the results.

I collapse these point event data to a raster grid with annual observations for cells with a
0.25° resolution (15 arcminutes, approximately 28x28km). Analyzing impacts at this spatial level
reduces potential measurement error about the specific areas affected by swarm and conflict events
and allows me to leverage local variation in swarm presence created by their flight patterns. The
median swarm covers around 50 km?, so nearly all swarms will be contained within 0.25° cells (~784
km?), except those near cell boundaries. I test for robustness to analyzing data at the level of 0.5°
and 1° cells, which will also capture potential spillovers from swarm exposure. In each cell and year
I measure whether any locust swarm and conflict event is recorded. I do not account for variation
in the counts of swarm or conflict events as the individual events are not themselves of consistent
magnitudes. To test for spatial spillovers, I also measure whether any swarms are observed within
100 km outside of each cell-year.

I determine the country and highest sub-national administrative unit in which each cell centroid
lies using country boundaries from the Global Administrative Areas (2021) database v3.6. I use
sub-national administrative boundaries to create a set of 285 regions, all of which include at least

32 individual grid cells except for small countries with fewer than 32 cells. These regions are either

YT provide examples of each from 2012 in Mali. Battle: On August 22 in Ansongo, MUJAO fighters and Military
forces from Niger clashed close to the town of Tessit, with four MUJAO fighters killed. Explosion: On August 15
in Ansongo, anti-personnel mines planted by MUJAO exploded and killed two people. Violence against civilians:
On July 26 in Timbuktu, a shepherd was killed after resisting an attempt by Ansar Dine fighters to steal one of his
animals.
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existing sub-national administrative units or combinations of adjacent units within the same country.
I cluster standard errors at the level of these regions.

Given the role of weather in desert locust biology, its importance in determining agricultural
production, and the well-documented relationship between weather shocks and conflict, all analyses
control for local weather to isolate the impact of locust swarm exposure. I measure total annual
precipitation (in mm) and maximum temperature (in °C) using high-resolution monthly data from
WorldClim available through 2018.'2 I measure drought exposure using monthly Standardized Pre-
cipitation and Evapotranspiration Index (SPEI) data from the Global Drought Monitor (Begueria
et al., 2014). My primary definition of drought at the annual level is at least 4 consecutive months
in a year where the SPEI in a cell is below -1.5, indicating significantly drier conditions relative to
local historical norms (values from -1 to 1 indicate near-normal within-cell conditions).

I also incorporate raster population data for every 5 years from CIESIN, 2018, linearly inter-
polating within cells between years where the population is estimated, and raster data on land
cover in 2000 from CIESIN, giving the share of land cover in each cell that is cropland and pasture
(Ramankutty et al., 2010). T combine the land cover data with cropland mapping of Africa from
2003-2014 (Xiong et al., 2017) to identify cells with any cropland during the study period. I include
additional cell characteristics, such as the start and end month of the main agricultural season,
from the PRIO-GRID dataset (Tollefsen et al., 2012), assigning all 0.25° cells the values for the 0.5°
PRIO-GRID cell in which they are located.

For the analysis of mechanisms, I incorporate data on agricultural production, economic activity,
and net migration. Household-level estimates of agricultural production come from the Advancing
Research on Nutrition and Agriculture (AReNA) Demographic and Health Surveys (DHS) GIS
database (IFPRI 2020), which includes geolocated data at the level of household survey clusters for
40 surveys from 9 countries in the study sample conducted between 1992 and 2018.1 incorporate two
satellite-based measures of agricultural productivity: the Normalized Difference Vegetation Index
(NDVI) and estimates of major crop yields. I calculate the NDVI—a commonly-used satellite-based
measure of vegetation greenness at a given point and time—using 16-day 1km satellite imagery from
MODIS (Didan, 2015) for the period 2000-2019, taking the maximum of monthly means in each
grid cell to construct an annual value. In crop land, NDVI can be considered a rough proxy for
agricultural production. Global annual yield data for four major crops—maize, rice, wheat, and
soybean—at the 5 arcminute resolution for 1982-2015 come from Cao et al. (2025). Most cells only
include data for one of the four crops, but for cells with multiple crops in the dataset I define the
‘main’ crop as the crop with the highest yield. Finally, net migration at the 5 arcminute resolution
for 2000-2019 come from Niva et al. (2023), who estimate net migration based on subnational annual

data on population, births, and deaths.

12C0RU-TS 4.03 (Harris et al., 2014) downscaled with WorldClim 2.1 (Fick and Hijmans, 2017). I test sensitivity to
measuring rainfall using CHIRPS (Funk et al., 2015) and temperature using ERA5 (Hersbach et al., 2019) to account
for satellite-based weather measurement error (Josephson et al., 2024).
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4.1 Sample and summary statistics

Since ACLED records conflicts beginning in 1997 and the main weather data are available until 2018,
the analysis sample includes observations from 1997 to 2018. I restrict the analysis to countries with
at least 10 locust swarm observations in this period. The resulting analysis sample covers 22 years
across 25,435 cells, for a total of 557,018 observations with data on all main estimation variables.
Figure 2 visualizes swarm exposure, violent conflict incidence, and agricultural land cover for the

sample countries. Summary stats are included in Table A1l.

Figure 2: Swarm exposure, violent conflict incidence, and land cover in sample countries

A. Year of first locust swarm exposure 2020 B. Any swarm within 100 km (1997-2021)
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Note: Panel A presents the first year after 1989 in which a locust swarm is observed in a given cell, using FAO Locust Watch
data. This defines the swarm exposure year. Panel B shows all cells where any locust swarm was ever observed within 100
km of the cell centroid from 1996-2021. Panel C shows the count of years for each cell in which any violent conflict event was
recorded in the ACLED database, from 1997-2018. Panel D presents ‘baseline’ land cover data for the year 2000 from CIESIN.
Land used for agriculture includes crop land and pasture land. T

Locust swarms are relatively rare events, with swarms reported in less than one percent of cell-
years (Table A1l Panel A). But at least one locust swarm is recorded in 9% of cells in the study
period of 1997-2018 and 55% are within 100 km of any locust swarm report (Figure 2 Panel B).
To account for the possibility of persistent effects of swarm exposure, I identify for each cell the
first year after 1989 in which a locust swarm is recorded (Figure 2 Panel A), and define a cell as
exposed to a locust swarm in each following year and not exposed in all other years or if no locust
swarm is ever observed. Cells first exposed to a swarm before 1997 (in dark blue in Figure 2 Panel
A) are considered treated during the entire sample period and therefore do not inform the analyses,
while cells first exposed to a swarm after 2018 (in red) are considered not treated during the sample
period. Just over seven percent of cells are first exposed to a swarm during the sample period,
including 5.3% exposed during the 2003-2005 upsurge (in teal).

Violent conflict is also uncommon, with events reported in two percent of cell-years (Table Al

Panel A). Conflict is temporally correlated (Figure 2 Panel C), with 13% of cells experiencing at
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least one violent conflict event during the study period, in 3.4 different years on average (Table A1l
Panel B). The risk of any violent conflict is fairly low from 1997-2010 before increasing significantly
over the remainder of the sample period (Figure 5 Panel A). The increase corresponds with the
timing of the Arab Spring movements, the spread of Islamic militant groups, and multiple civil wars
and separatist movements in the sample countries.

Over half the cells (57%) in the sample have agricultural land: 56% have pasture land while 31%
have crop land. Across all cells, the mean share of land allocated to agriculture is 23% (Figure 2
Panel D, Table A1 Panel B), with 18% pasture land and 5% crop land. Given that locust swarms
should affect outcomes through agricultural destruction, I test for heterogeneity in impacts by land

cover.

4.2 Locust swarm monitoring

The Locust Watch database likely does not include all locations of swarm exposure events over time
due to monitoring capacity limitations. Randomly missing swarm events—classical measurement
error—would attenuate estimated effects, but swarm monitoring is likely correlated with character-
istics that might also be correlated with conflict risk, such as agricultural activity and population
levels. For example, Gantois et al. (2024) find heterogeneity in locust reporting across country bor-
ders, indicating differences in country monitoring capacities. Unreported swarms are an important
challenge for studies using household survey data that must define exposure at the level of specific
community coordinates, and studies such as Gantois et al. (2024) and Marending and Tripodi (2022)
take different approaches to deal with this concern. An advantage of defining swarm exposure as
an annual dummy variable at the level of grid cells is that only one swarm needs to be reported in
a relatively large area to define the cell as exposed. But differences in cell-level monitoring effort
may still lead to biased estimates.

The main empirical specification accounts for this in two ways. First, I restrict the sample to
only cells where a locust swarm was ever reported within 100 km. This drops cells with no real
risk of swarm exposure as well as cells far from any monitoring activity. Second, in all regressions
I control for population and weather variables which are likely to be strongly correlated with both
conflict risk and monitoring intensity. Cell fixed effects also control for fixed characteristics which
may affect monitoring and the risk of locust exposure, such as elevation, distance from breeding
areas, and being within typical swarm migratory paths. Country-by-year fixed affects control for
average differences in state monitoring capacity.

In addition, I conduct several types of robustness checks to test whether issues in locust mon-
itoring may affect the estimated effects on conflict risk. First, I estimate the propensity for a cell
to have been exposed to a swarm during the study period, which accounts for differences in both
swarm risk and monitoring, and test the sensitivity of results to controlling for propensity-by-year
fixed effects. Second, I aggregate the analysis to the level of larger cells, which reduces the rigk
that individual unreported swarms may affect the analysis as such swarms are more likely to be co-

located with other swarms that are reported in larger cells. Third, I systematically exclude different
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regions from the sample to check whether results are driven by areas with particular conflict and
locust monitoring conditions. Fourth, I conduct simulations randomly imputing ‘missing’ locust
swarms across all cells near the locations of reported swarms, to see how different levels of potential
swarm underreporting would affect the results.

A specific concern might be that locust reporting is correlated with violent conflict. This concern
is the focus of Torngren Wartin (2018)’s analysis of the impact of locusts on conflict, which uses
similar data but focuses on the short-term, modeling locusts as temporary shocks. Showler and
Lecoq (2021)—which I refer to as ‘SL2021’ in analyses below—review how insecurity has affected
national and international desert locust control operations from 1985-2020 across countries where
locusts are active. They mention Chad, Mali, Somalia, Sudan, Western Sahara, and Yemen as
countries with areas where insecurity has constrained locust control operations in certain periods
since 1997.

Insecurity is likely less of a constraint for locust monitoring than for control operations. FAO
locust monitoring guidelines discuss conducting aerial surveys and using reports from local scouts,
agricultural extension agents, security forces, and other sources (Cressman, 2001), which would
allow reporting even in insecure areas. Gantois et al. (2024) find that contemporaneous conflict
reduces the probability of any locust monitoring by 11.7%, but generally no significant effect on
locust swarm reporting. This may reflect greater importance or resources for swarm monitoring,
or better-established methods for collecting reports of swarms from disparate sources. The Locust
Watch data includes observations of locust swarms even in countries and periods where SL2021
indicate control operations have not been possible. The share of cells within 50 km of a locust
swarm observation in a given year that have reports of a locust swarm within the cell is around
25% in both the set of countries SL2021 indicate pose challenges for locust control and all other
countries, and these swarm reports are much more likely to coincide with violent conflict events in
the SL2021 countries suggesting this violence is not unduly deterring locust monitoring.

Missing swarm observations in high-conflict areas would bias my estimates downward by in-
cluding in the control group areas exposed to locusts with likely higher future levels of conflict, as
conflict risk is serially correlated. I test the sensitivity of the results to excluding the countries listed
in SL2021 as potential locations of locust swarm under-reporting, and to systematically excluding
different regions from the sample to check whether results are driven by areas with particular conflict
and locust monitoring conditions. In addition, I conduct simulations randomly imputing ‘missing’
locust swarms particularly in cells experiencing conflict near the locations of reported swarms to

test effects of potential underreporting in these areas.

5 Empirical approach

I use a difference-in-differences approach to estimate the causal impacts of locust swarm exposure
on violent conflict. I consider swarm exposure to be an absorbing treatment to allow for long-term

effects of this transitory agricultural shock. Cells are defined as exposed to a locust swarm in all
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years starting from the first year a swarm is observed in a cell (starting in 1990), and not exposed
before or if no locust swarm is ever observed.

I estimate both static average impacts and dynamic impacts over time using the Borusyak et al.
(2024) imputation estimator (BJS). I also consider alternative estimators including Callaway and
Sant’Anna (2021), Cengiz et al. (2019), De Chaisemartin and d’Haultfoeuille (2024), and Sun and
Abraham (2021) and a standard two-way fixed effects (TWFE) specification, and find similar results.
The estimators mainly differ in how they estimate pre-trends. BJS impute counterfactual untreated
outcomes for all units and make comparisons against the average over all pre-treatment periods,
leading to smoother pre-treatment dynamics (Roth et al., 2023). This imputation approach deals
with concerns with TWFE estimators when there is heterogeneity in treatment effects by time since
treatment or across treatment cohorts, which can lead to ‘forbidden’ comparisons between late-
and early-treated groups and negative weighting of effects for certain treatment groups or periods
(Goodman-Bacon, 2021).

I present a standard TWFE estimation model to build intuition on the setup and the source of
identifying variation in the analysis, as this is the same with the BJS estimator. The static average

impact TWFE linear probability model takes the form:
Yiet = a + BEzposedict + 0 Xict + Vet + i + €ict (1)

where ¢ indexes cells, ¢ countries, and ¢ years. The outcome Y in the primary specifications is
a dummy variable for observing any violent conflict event in the cell during a given year in the
ACLED database. Analyzing conflict as a binary variable at an annual level reduces potential
measurement error and is the main approach in the climate and conflict literature. I consider effects
on other outcomes in tests of the impact mechanisms. Exposed is an absorbing dummy variable
for having been exposed to a locust swarm, . switching from 0 to 1 in the year of exposure and
for all subsequent years. Cells that are never exposed in the sample period have a value of 0 for
all years, and cells first exposed beforehand have a value of 1 for all years. The dynamic version
of the analysis includes 10 years of both lags and leads of the indicator for the onset of treatment.
I choose 10 years to account for the fact that the analysis sample focuses on the period 1997-2018
and just under three-quarters of swarm exposure in this period takes place in 2004-2005. I test the
robustness to considering different numbers of lags and leads.

Cell fixed effects p; control for time-invariant cell characteristics (over the sample period) which
might affect both the likelihood of swarm exposure and of experiencing violent conflict. Country-
by-year fixed effects . flexibly control for country-level variation over time in the intensity of locust
swarms and violent conflict. X, is a vector of time-varying controls at the cell level to account
for locally-varying conditions which may affect both swarm exposure and the risk of conflict. The
main specifications include annual cell total precipitation, maximum temperature, and population.
Impacts of swarm exposure are therefore estimated using differences within cells in variation over
time in violent conflict, between cells in the same country and with the same precipitation, tem-

perature, and population but with different exposure to locust swarms. Standard errors (SEs) are

18



clustered at the sub-national region level (285 clusters) to allow for correlation in the errors within
nearby areas over time.

The BJS estimator follows a similar setup and includes the same fixed effects and controls,
8o leverages the same identifying variation. The process of the estimation is different, however,
proceeding in three general steps (Borusyak et al., 2024, p. 3255). First, the estimator fits &, fi;,
Vet, and 5 using only untreated observations. Next, these fitted values are used to impute untreated
potential outcomes for treated cells post-exposure. These imputed outcomes are subtracted from
actual outcomes to estimate treatment effects. Then, the estimator takes an average of treatment
effect, either on average for the static impact estimate or by period relative to treatment for the
dynamic estimate. Because the time fixed effects are estimated using only data from untreated
observations, the v,; are implicitly weighted toward periods with more untreated units, but otherwise
the averages are calculated using equal weighting across treatment cohorts (by year of exposure). In
this study the untreated groups are quite large, so the implicit weighting should be fairly uniform.

The identification strategy relies on quasi-random variation in which areas in the migratory path
of locust swarms during a given outbreak are actually exposed to locust destruction, due to swarm
flight patterns. The key identifying assumption of the econometric design is that trends in conflict
risk would be parallel over time in exposed and unexposed areas within the same country in the
absence of locust swarm exposure, after controlling for effects of weather and population.

The key threat to the assumption is if locust swarms are more likely to affect areas with different
propensity to experience conflict. The literature on locust biology suggests that—conditional on
swarms forming in breeding areas and then beginning to migrate—where swarms land is driven by
wind direction and time of day rather than land cover or particular types of vegetation. This implies
quasi-randomness in exposure within swarm migratory paths. But selection in locust reporting,
discussed in subsection 4.2, could lead to a violation of the parallel trends assumption by leading
to differences in where swarms are observed.

While the parallel trends assumption is not possible to test directly, I explore its plausibility in
two main ways: testing for balance in baseline or fixed cell characteristics and testing for parallel
trends in outcomes prior to exposure. I discuss balance in cell characteristics here and discuss
pre-trends when presenting the main event study results. Cells exposed to a locust swarm during
the sample period have different baseline characteristics than unexposed cells which are largely
consistent with desert locusts rarely being observed in the interior of the Sahara desert (as shown in
Figure 2). Exposed cells have larger populations, are closer to capital cities, have a greater share of
pasture land and smaller share of barren land, and have lower maximum temperatures (Table A2).
These differences are smaller and lose some statistical significance when restricting the sample to

cells within 100 km of any locust swarm from 1997-2021, a proxy for being in potential swarm

13Patterns of statistical significance are largely unchanged when using two-way clustered errors at the year and
region level and using Conley (1999) Heteroskedasticity and Autocorrelation-Consistent (HAC) SEs allowing for
spatial correlation over 100 and 500 km and serial correlation over 0 or 10 time periods, following Hsiang (2010)’s
approach (Figure B3). Clustering at the sub-national region level consistently leads to SEs at least as large as Conley
SEs allowing for spatial correlation within 500 km and serial correlation over 10 years, implying the main SEs I report
are conservative and may understate statistical significance of certain estimates.
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migratory paths (a joint test of differences in cell characteristics yields F' = 2.38 and p < 0.01).
These patterns appear more consistent with selection in locust swarm reporting than vegetation-
driven selection in where swarms land, particularly as there is no difference in the share of cell crop
land by exposure status.

One approach to account for imbalance in covariates is to weight observations by the conditional
probability of being treated (Abadie, 2005; A. Baker et al., 2025; Stuart et al., 2014). T estimate the
propensity of any locust swarm exposure during the study period as a function of fixed cell char-
acteristics including land cover and population in 2000, distances to the capital and to a national
boundary, mean weather realizations over the study period, and country fixed effects. I first use a
lasso regression to select parameters and then estimate exposure propensity using a logit regression.
I use the results to construct inverse propensity weights as % for cells that were exposed and ﬁ
for cells that were not, where p is the estimated probability of swarm exposure. I assign cells with
estimated probabilities outside the range of common support a weight of 0. Restricting to cells in
likely migratory paths and including these weights largely eliminates differences in baseline charac-
teristics (F' = 0.64 and p = 0.824 for the joint test of differences; Table A2). The Borusyak and
Hull (2023) approach to dealing with non-random exposure to exogenous shocks involves adjusting
for average treatment across shock counterfactuals—this has been used in the case of locust swarms
by Marending and Tripodi (2022). I draw on this by testing the robustness of the results to control-
ling for swarm exposure propensity-by-year fixed effects, which would account for potential different
trends in areas with high exposure propensities, treating this as a proxy for average treatment under
different shock realizations.

Baseline differences by swarm exposure status are not a concern if they do not affect conflict risk
or only affect levels of conflict, but it is plausible that some of the differences would affect conflict
trends. However, the controls in the empirical specifications should absorb most of these differences.
Cell fixed effects control for time invariant cell characteristics that might affect the risk of conflict
such as distance to major cities or country boundaries, topography, and agricultural suitability, but
also distance from locust breeding areas. Country-by-year fixed effects flexibly control for factors
varying over time at the country level that might affect conflict risk, such as food price shocks,
weather patterns, the policy environment and national economic and social conditions. Importantly,
they control for trends in violent conflict incidence, which increases over the sample period. I also
directly include in the regressions time-varying characteristics that differ between exposed and
unexposed cells and may affect locust reporting and conflict risk—population and temperature-as
well as annual precipitation. I control for baseline differences in distance to the capital by defining all
cells as either below or above the median distance to the capital within each country, and including
capital distance by year fixed effects in the regressions to account for potential differential trends
in conflict risk over time by proximity to country capitals. Finally, the main analyses restrict the
sample to cells within 100 km of any locust swarm from 1997-2021 (illustrated in Figure 2 Panel
B) and within the range of common support of the estimated propensity of swarm exposure across

exposed and unexposed cells. This effectively restricts the sample to areas within swarm migratory
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paths during recent outbreaks, where exposure is most likely to be quasi-random.

Another identification assumption relevant to event study designs with staggered treatment tim-
ing is the no anticipation assumption: knowledge of future treatment timing does not affect current
outcomes (Roth et al., 2023). Populations may expect a higher probability of swarm exposure
in years of major upsurges but cannot perfectly anticipate timing of exposure. For example, the
FAO Desert Locust Watch publishes monthly forecasts of areas predicted to be at risk of locust
swarm exposure but the predictions include a great deal of uncertainty due to unpredictable minor
variations in swarm flight patterns. Consequently, areas forecast to be at risk are generally quite
large, the majority of which end up not being affected by locusts.'® Anticipation may also have
limited effects as there are no effective methods of defending vegetation against locust swarms, and
farmers in at-risk areas typically describe locust prevention and control as out of their hands and
the responsibility of governments (Thomson and Miers, 2002).

Finally, the empirical specification assumes no effects of locust swarm exposure outside of the
exposed cells. In the robustness checks, I first test the sensitivity of the results to conducting the
analysis in larger grid cells, to increase the likelihood that any effects are contained within exposed
cells. I then relax this assumption by including an absorbing treatment indicator for being within
100 km of a locust swarm during the study period, defined similarly as the within-cell exposure

variable.

6 Results

Figure 3 presents event study estimates of the impact of desert locust swarm exposure on violent
conflict at the cell-year level using the Borusyak et al. (2024) imputation estimator (BJS). The
average pre-exposure difference is -0.003 but is not significantly different from 0, with 5 positive
coefficients and 5 negative coefficients. Only one pre-exposure coefficient is larger than 0.007 in
magnitude or statistically significant: on average violent conflict is 2.4 percentage points (pp) less
likely in areas exposed to locust swarms compared to unexposed areas 9 years before exposure.
Because of this one highly significant difference 1 reject that pre-exposure differences are jointly
equal to 0 (p = 0.002), but I fail to reject that the 9 other pre-exposure coefficients are jointly
equal to 0 (p = 0.230). I find similar patterns and also fail to reject that pre-exposure coefficients
are jointly equal to 0 if I include only 6 pre-exposure periods (Figure B2 panel A). Together,
these results indicate similar probability of violent conflict by swarm exposure in the pre-exposure
periods. Though this does not preclude the possibility that trends would differ in the years after
swarm exposure for reasons unrelated to agricultural destruction, it is an encouraging sign that the
parallel trends assumption likely holds.

In contrast with the pre-exposure coefficients, 8 of 11 treatment coefficients are statistically
significant at a 95% confidence level. The average effect is a 1.4pp increase in the annual risk of any

violent conflict event. All coefficients are positive and all but the three non-significant coefficients

"1 find that monthly forecasts of at-risk areas during the major upsurge in 2004 covered on average 40.6% of 0.25°
cells in sample countries, but nearly one-quarter of swarms in this period were recorded outside of these areas.
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Figure 3: Impacts of exposure to locust swarms on violent conflict risk over time
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Note: The dependent variable is a dummy for any violent conflict event in a cell-year. Estimated impacts in each time period
are weighted averages across effects for swarm exposure in particular years, calculated using the BJS estimator. Time period
0 is the year of first swarm exposure. Brackets represent 95% confidence intervals using SEs clustered at the sub-national
region level. All regressions include country-by-year and cell fixed effects and controls for annual precipitation, maximum
temperature, and population, and distance to capital by year fixed effects. Observations are grid cells approximately 28 x28km
by year. Coefficient estimates are shown in Table A3 column 1. At the top left and right I show averages of pre- and
post-exposure coefficients. On the bottom left I show the results of a joint test that the pre-exposure coefficients equal 0. A
joint test omitting the period 9 years before exposure yields p = 0.230.

are larger than 0.007 in magnitude, the largest pre-exposure magnitude outside of the period 9 years
before exposure.

Despite the large average long-term effects, the point estimate for the effect on violent conflict
risk in the year of exposure is a fairly precise 0. This contrasts with much of the literature on climate
and conflict which focuses on short-term effects. These studies generally find significant concurrent
increases in conflict risk, though Crost et al. (2018) and Harari and La Ferrara (2018) also find that
growing season weather shocks have delayed effects on conflict. Estimated treatment effects are
positive but not significant in period 1 after exposure but then significant and generally increasing
until another null effect 6 years after exposure. The most striking result is that the largest effects of
exposure on violent conflict risk are realized starting 7 years post-exposure: coefficients for periods
7-10 are all larger than 0.021. While the standard errors for these coefficients are larger they are all
significant at a 99% confidence level. 1 explore reasons for this pattern of dynamic impacts in the
Mechanisms section.

I estimate event study effects using several alternative staggered difference-in-differences esti-
mators (Callaway and Sant’Anna, 2021; Cengiz et al., 2019; De Chaisemartin and d’Haultfoeuille,
2024; Sun and Abraham, 2021) and find nearly identical dynamic treatment effects (Figure B1) and

average long-term effects (Table B1). There is some variation in estimated pre-exposure differences,
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which is expected as a key difference across these estimators is how pre-exposure effects are calcu-
lated. Pre-exposure standard errors are generally larger in the main Borusyak et al. (2024) method
because comparisons are made against averages over the full pre-treatment period and there are not
10 years of pre-exposure data for most treated cells. The Callaway and Sant’Anna (2021) finds more
significant pre-exposure differences, but these alternate between positive as negative likely because
this method makes comparisons between adjacent periods, suggesting no clear pre-exposure pattern
in violent conflict risk. The other estimators each find limited significant (negative) pre-exposure
differences as in the BJS method.

6.1 Average impacts of swarm exposure on violent conflict

Figure 3 shows that on average across 11 exposure and post-exposure periods, swarm exposure
increases the annual risk of any violent conflict event by 1.4pp. Table 1 column 1 shows estimated
average long-term impacts across all exposure and post-exposure periods. On average cells exposed
to locust swarms are 1.8pp more likely to experience any violent conflict in a given year in the
period after swarm exposure than cells not exposed. This represents a 64% increase over the mean
for non-exposed cells after 2004, the main year of swarm exposure. The larger average long-term
impact in Table 1 column 1 than in Figure 3 indicates that the larger magnitude effects on violent
conflict persist more than 10 years after swarm exposure, and I show this when including 14 years
of post-exposure effects in Figure B2 Panel B.

The average long-term impact of swarm exposure is large compared to the same-year effects
of weather fluctuations. A 1 SD increase in annual precipitation increases the probability of any
violent conflict in the same year by 0.4pp (14%) compared to 1.2pp (43%) for a 1 SD increase in the
maximum annual temperature. The effect of temperature is in the upper end of the distribution
of estimates of the impacts of climate on intergroup conflict in Burke et al. (2024)’s meta-analysis,
potentially because of the use of maximum temperature and the time period studied. Cell population
is also positively associated with conflict risk, with an increase of 10,000 people associated with a
1.0pp (36%) increase in the probability of any violent conflict event in a year.

If estimated effects are capturing causal effects of swarm exposure we should expect hetero-
geneity by land cover since swarm exposure should primarily impact outcomes through agricultural
destruction (Table 1 columns 2 and 3). Swarm exposure in non-agricultural cells (23% of the anal-
ysis sample) has no significant effect while in agricultural cells annual violent conflict risk increases
by 1.9pp, though I cannot clearly reject that the effects are the same (p = 0.109). Locust swarms
increase annual violent conflict risk by 2.3pp in crop cells (57% of the sample) compared to no
significant effect in non-crop cells (46% of which have pasture land), and here the difference is
statistically significant (p = 0.025). These differences are consistent with locust swarms affecting
conflict risk through initial agricultural destruction.

I find similar average long-term effects of swarm exposure estimated using TWFE as presented
in Equation 1 (Table B2). The average long-term impact with this estimator is a 2.0pp increase,

slightly larger than the main BJS estimate. This suggests limited bias in the TWFE estimates from
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Table 1: Average impacts of exposure to locust swarms on violent conflict risk by land cover

Outcome: Any violent conflict event (1) (2) (3)
Land =
Any crop or Land =
All land pasture land Any crop land
Average effect of swarm 0.018***
exposure (0.004)
Total annual precipitation 0.004** 0.004** 0.004**
(SDs) (0.002) (0.002) (0.002)
Max annual temperature (SDs) 0.012** 0.012** 0.012**
(0.005) (0.005) (0.005)
Population (10,000s) 0.010*** 0.010*** 0.010***
(0.002) (0.002) (0.002)
Effect of exposure, Land=0 0.006 0.007
(0.006) (0.004)
Effect of exposure, Land=1 0.019*** 0.023***
(0.005) (0.006)
Observations 301664 301664 301664
p-value, equality of effect by land cover 109 .025
Outcome mean post-2004, no exposure 0.028 0.028 0.028
Country-Year FE Yes Yes Yes
Cell FE Yes Yes Yes
Controls Yes Yes Yes

Note: The table presents results from three separate regressions of average long-term impacts of locust swarm exposure on the
probability of any violent conflict event in a cell-year using the BJS estimator. In columns 2 and 3 I estimate heterogeneous
effects by land cover in 2000, considering whether there is any crop or pasture land and any crop land, respectively. The
‘Land=0’ row shows the estimated average long-term effects in cells with no such land cover while the ‘Land=1’ row shows
the impact in cells with such land cover. At the bottom of the table I include p-values for the test of equality of these two
coefficients. The outcome mean for control cells is shown for post-2004 for comparison with exposure impacts in the period
after the majority of swarm exposure occurred. All regressions include country-by-year and cell fixed effects and controls for
annual precipitation, maximum temperature, and population, and distance to capital by year fixed effects. Observations are
grid cells approximately 28 x28km by year. SEs are clustered at the sub-national region level.

* p<0.1, ¥ p < 0.05, ¥* p < 0.01

staggered timing of swarm exposure, potentially because close to three-quarters of exposure occurred
in the same period in 2003-2005. 1 find slightly larger differences in average long-term effects of
swarm exposure by land cover, and the difference by any agricultural land becomes statistically
significant at a 95% confidence level. The TWFE regressions also allow me to test heterogeneity
in effects of precipitation, temperature, and population (Table B2 columns 2 and 3), which is
not possible with the Stata package implementing the BJS estimator. Effects of precipitation are
marginally significantly larger in cells with any crop land but remain significant in non-agricultural
cells. Effects of temperature do not vary by land cover. These results echo previous work questioning
whether agricultural mechanisms explain the relationship between climate and conflict (Bollfrass
and Shaver, 2015; Sarsons, 2015). The association between population and conflict risk does not
vary significantly with land cover. The estimated effect in non-agricultural cells is very large but
there is little identifying variation driving this estimate.

To further test that impacts of locust swarms are driven by initial impacts on agricultural
production, I consider heterogeneity in impacts by both land cover and by timing of swarm exposure
relative to local crop calendars. I categorize swarms as arriving during particular stages of the crop
production cycle by matching the month in which a swarm is observed to crop calendar information
from the PRIO-GRID dataset, filling in missing data with country-level crop calendars from The
United States Department of Agriculture (USDA) (2022).The off season—between harvesting and
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planting—Ilasts between 3 and 6 months in most of the sample cells, with an average of slightly
over 4 months. I distinguish between swarms arriving during the off season and planting season
(first two months of the main agricultural season) when they are unlikely to significantly damage
crop production, and swarms arriving in the growing and harvesting season when potential damages
should be greatest. Figure Al presents the timing of locust swarms by region across the sample
period. Swarms in cells with crop land are more frequently observed during the growing/harvest
season, likely because locust breeding primarily occurs during wetter months which tend to overlap
with the planting period and swarm migration out of breeding areas follows in subsequent months.

As with the main analysis, T use the first year a cell was exposed to a locust swarm during a
particular season to construct an absorbing treatment variable. I then estimate Equation 1 with the
two seasonal swarm exposure treatments using TWFE and fully interact all variables with dummies
for any agricultural or crop land cover. Table 2 column 1 shows that effects on violent conflict
risk are driven by exposure to locusts swarms during the growing or harvest season in cells with
any agricultural land, where exposure increases average annual risk of any violent conflict event by
2.6pp. There are no significant effects of swarm exposure in other seasons or non-agricultural cells.

The patterns are similar when considered differences by any crop land in particular (column 2).

Table 2: Impacts of swarm exposure by land cover and swarm timing

Outcome: Any violent conflict event (1) (2)
Land =
Any crop or Land —
pasture land  Any crop land
Off/planting season, Land=0 -0.001 0.001
(0.005) (0.006)
Off/planting season, Land=1 0.007 0.009
(0.006) (0.007)
Grow /harvest season, Land=0 0.007 0.012
(0.011) (0.007)
Grow /harvest season, Land=1 0.026*** 0.028"**
(0.007) (0.008)
Observations 301664 301664
Outcome mean post-2004, no exposure 0.028 0.028
p, off/plant season non-crop=crop effect 0.321 0.288
p, grow /harvest season non-crop=crop effect 0.161 0.127
p, non-crop off/plant=grow /harvest effect 0.536 0.254
p, crop off/plant=grow/harvest effect 0.059 0.087
Country-Year FE Yes Yes
Cell FE ‘es Yes
Controls Yes Yes

Note: The table presents results from a single regression interacting two seasonal swarm exposure treatment variables with a
dummy for crop land cover with the same fixed effects and controls as in Equation 1. The coefficients and standard errors are
calculated using Stata’s zlincom command based on the sums of the coefficients for the non-crop seasonal effects and the crop
interaction terms. Observations are grid cells approximately 28x28km by year. SEs are clustered at the sub-national region
level.

*p<0.1, ¥ p <0.05, ¥** p < 0.01

For both land cover types (any agricultural land and any crop land specifically), I can reject
equality of effects of swarm exposure in cells with such land cover by whether the exposure occurred
in the off/planting seasons compared to the growing/harvest seasons (p = 0.059 and p = 0.087,
respectively for the two land cover dummies). Positive point estimates for effects of off/planting
season swarms in such cells indicates that in some cases there are impacts of swarm exposure

through destruction of vegetation even outside of peak crop production periods. This could include
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destruction of pasture, of perennial crops such as tree crops, and of early growth of annual crops.
What we might consider ‘placebo’ swarms in non-agriculture or non-crop cells during the off or
planting seasons have an estimated effect close to 0, in line with expectations. Point estimates of
the effect of growing or harvest season swarms in non-agriculture and non-crop cells are positive
and close to being marginally significant in the case of non-crop cells (p = 0.131). I cannot reject
equality of effects by land cover of growing/harvest season exposure (p = 0.161 and p = 0.127,
respectively for the two land cover dummies), suggesting effects through destruction of pasture or
other vegetation (pasture is present in nearly half of non-crop cells).

This finding adds to other studies showing that the impact of weather shocks on conflict risk
varies depending on whether the timing of the shock is such that it is likely to decrease agricultural
productivity (Caruso et al., 2016; Crost et al., 2018; Harari and La Ferrara, 2018). The results in
Table 2 also increase confidence that the estimated effects represent true causal impacts of swarm

exposure and not bias due to selection in where swarms are reported.

6.2 Robustness

Event study results are similar when varying the fixed effects and controls included in the estimation
(Figure B4). Estimates are nearly unchanged when dropping the population, weather, and distance
to capital by year controls and when adding estimated swarm exposure propensity-by-year fixed
effects. Replacing country-by-year fixed effects with year or sub-national region-by-year fixed effects
leads to generally more positive (but still not statistically significant) pre-exposure period coefficients
and very similar post-exposure dynamic treatment effects.

In line with these results, average long-term impacts are also similar when varying fixed effects
and controls (Figure B5). In addition to the specifications shown in Figure B4, I also vary which
of the main controls are included, add weather lags, use alternative measures of precipitation and
temperature from CHIRPS (Funk et al., 2015) and ERA5 (Hersbach et al., 2019) respectively, and
add agricultural land-by-year fixed effects. The smallest estimates are with the same controls but
year rather than country-by-year fixed effects (a 1.3pp increase in violent conflict risk) and when
adding exposure propensity-by-year fixed effects (a 1.4pp increase). I find a 1.9pp increase in violent
conflict risk when using sub-national region-by-year fixed effects to identify impacts off of more local
variation in swarm exposure. In all cases the estimated long-term average impact of swarm exposure
on violent conflict remains large and statistically significant, and in no case can I reject that the
estimate under the alternative specification is the same as the main specification.

The main specification includes all years from 1997-2018 and excludes cells more than 100 km
from any swarm report and outside the range of common support of estimated swarm exposure
probability. Dropping individual years when locust swarm exposure events occurred does not affect
the estimates, though the estimate is much noisier when dropping the main 2004 exposure event
(Figure B6 Panel B). This indicates that the overall estimates are not driven by any particular
swarm exposure events. The results are similar when including the full sample of cells and when

dropping various geographic regions (Figure B6 Panel A). This addresses concerns that the long-
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term impacts on violent conflict may be spurious and due to swarm exposure during the sample
period being correlated with factors driving later conflict emergence. For example, dropping North
Africa ensures that results are not driven by the Arab Spring and dropping Arabia ensures results
are not driven by the civil war in Yemen.

The heterogeneity in effects of swarm exposure by timing and land cover indicate that the
estimated impacts are not driven by potential bias in where locust swarms are reported. But
measurement error in locust swarms may still create bias, and other studies of impacts of swarm
exposure have pointed to concerns raised by Showler and Lecoq (2021)—SL2021-—that swarms may
be particularly underreported in insecure areas (Gantois et al., 2024; Torngren Wartin, 2018). T find
that average long-term effects of swarm exposure are slightly smaller in magnitude (a 1.5pp increase
in violent conflict risk) when dropping countries where S1.2021 indicate insecurity has limited locust
control operations, and when dropping cells that experienced violent conflict during the 2003-2005
locust upsurge which might have prevented swarm reporting (Figure B6 Panel A). If violent conflict
were driving important levels of swarm non-reporting we might have expected larger effects of swarm
exposure when dropping these countries and cells by reducing the share of cells incorrectly classified
as not exposed to any swarm. Instead, the smaller effects reflect lower average change in violent
conflict in the rest of the sample relative to these more insecure areas.

The similar results in these samples imply that bias due to conflict-driven underreporting of
locust swarm exposure during the study period is unlikely to be a meaningful factor in the analysis.
I further test the potential for missing swarm observations to affect the estimates by simulating
how the results change as I increase the share of cell-years where potential ‘missing’ locust swarms
are imputed within 100 km of a locust swarm report. I first impute hypothetical ‘missing’ swarms
in the cells most likely to have been exposed. For this, I impute swarms in all cells with a high
estimated propensity of locust exposure in any year that another locust swarm observed within 100
km. The event study results are very similar even if I assign all cells with an estimated propensity of
exposure above 0.25 to have been exposed in the first year a swarm is reported nearby (Figure BT7).

Next, I impute swarms in areas experiencing violent conflict near existing swarm observations,
where SL2021 suggest they may be likely to be unreported. This type of measurement error should
bias my estimates downward as conflict is serially correlated, and I confirm that estimated effects
of swarm exposure increase as I impute more ‘missing’ swarms in such areas (Figure B8 Panel A).

I then randomly impute hypothetical ‘missing’ swarms across all cell-years with nearby swarms
reported. Estimated average long-term effects of swarm exposure on violent conflict risk fall as I
impute swarms in a larger share of cell-years around where swarms are reported (Figure B8 Panel
B). This could indicate that swarms are more likely to be reported in locations with higher long-term
conflict risk, but is also consistent with attenuation from random error in the treatment definition.
Although I cannot distinguish these explanations, the results are useful in bounding the potential
effect of locust swarm exposure. Even if I randomly assign 20% of cell-years near a swarm report to
be exposed to locusts, the estimated effect of swarm exposure remains economically and statistically

significant, with a mean 0.6pp increase in violent conflict risk that is significant at the 95% level in
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69% of simulations (Figure B8 Panel C). These results strongly imply that the estimated effects of
locust swarm exposure are not driven by selection in where swarms are reported.

Next, I consider differences in estimated effects when aggregating the sample to larger grid
cells. Using larger grid cells addresses several potential measurement issues. First, it minimizes the
possibility that the area exposed to a locust swarm recorded in a cell exceeds the boundaries of the
cell. Second, it reduces concerns about nearby areas that might have been affected by unreported
swarms since the entire cell is considered exposed if any swarm is reported within it. Third, it
limits the potential for conflict spillovers outside the cell. Downsides to analyzing impacts in a more
coarse grid are dilution of treatment intensity (as the share of the cell affected by swarms weakly
decreases with cell size) and the loss of quasi-random local variation in swarm exposure which is
central to the identification approach. The latter weakness implies that results at more aggregated
cell sizes should be interpreted with caution.

I observe similar patterns in dynamic impacts of swarm exposure over time when collapsing the
data to 0.5° or 1° cells (Figure B9). Impacts in post-exposure periods follow a similar patterns as
in Figure 3 but are larger in magnitude. Pre-exposure coefficients are more positive and generally
larger in magnitude and some are marginally statistically significant. Looking at average long-term
impacts, absolute effects are larger when collapsing the data to the level of 0.5 or 1° cells, but
effects relative to the probability of any violent conflict in unexposed cells are larger in 0.25° cells
(Table B3). This is consistent with higher probabilities of any violent conflict as cell size increases,
and with less dilution of the swarm exposure treatment in smaller cells.

Similar estimated magnitudes of swarm exposure impacts when using larger grid cells despite
dilution of treatment intensity indicate potential spillovers of violent conflict outside exposed cells.
Such spillovers are predicted by a model with spatially correlated agricultural shocks, as the returns
to fighting over output will be larger in areas not affected by the shock. For example, McGuirk and
Nunn (2025) find that drought in pastoral areas leads to conflict spillovers in nearby agricultural
areas. Agricultural destruction due to desert locust swarms is both particularly severe and less
spatially correlated than other agricultural shocks, due to swarm flight patterns. This implies both
a sharp decrease in the opportunity cost of fighting for agricultural producers in affected areas and
potentially more localized spillovers of this conflict. The main analysis considers ~ 28 x 28km grid
cells where the median locust swarm would only affect around 6% of cell area. Conflict incited by
locust destruction may be more likely to be realized within a grid cell, as the opportunity costs and
rapacity mechanisms are less likely to offset each other, but large absolute effects in larger grid cells
suggests some conflict spillovers may yet occur.

To test for this directly I define a spillover exposure treatment as being within 100 km of a swarm
outside of the cell and estimate effects of this treatment alongside direct exposure using the TWFE
estimator. 1 find a fairly precise null average effect of this spillover treatment when controlling for
direct swarm exposure, though spillovers from the 2003-2005 upsurge are marginally significant and
indicate a 1.1pp average long-term increase in conflict risk for cells within 100 km of a swarm during

that upsurge (Table B4). Focusing on impacts within 0.25° cells may therefore understate the full
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effect of swarm exposure on violent conflict risk around affected areas, but the results indicate that

most effects are contained within cells.

7 Mechanisms

Swarm exposure may affect future violent conflict risk through a variety of channels. A focus on the
long-term average increase in violent conflict might suggest hysteresis as an explanation as conflict
is highly autocorrelated over time. But the dynamic patterns rule this out as primary driver of the
impacts of swarm exposure, as there are no immediate effects that could lead to persistent long-term
insecurity.

In this section I focus on testing effects through agricultural productivity or permanent income
presented in section 3 An exploration of all potential mechanisms, such as increases in local in-
equality, changed perceptions of land productivity and agricultural risk, or effects on trust in the
state, in neighbors, or in religion, is outside the scope of the present study. The focus on testing
productivity- or income-related mechanisms does not rule out a potential role for such alternative

mechanisms.

7.1 Opportunity cost vs. rapacity in explaining null immediate effects

An opportunity cost mechanism alone, acting through immediate direct effects of swarm exposure
on agricultural productivity, would suggest immediate impacts of swarm exposure on violent conflict
(prediction 1 from Section 3). Severe negative effects of locust swarms on agricultural output are
well-documented (Green, 2022; Newsom et al., 2021; Showler, 2019; Symmons and Cressman, 2001;
Thomson and Miers, 2002). Agricultural producers whose productivity falls should be immediately
more likely to switch to engaging in violent conflict, if they do not have a stronger outside livelihood
option. This prediction is rejected by the results: there are null effects of locust swarms on violent
conflict in the year of exposure and the following year. This implies that decreases in opportunity
costs of fighting are either not sufficient to motivate a switch in occupation to fighting, that affected
populations primarily turn to other livelihood alternatives, or that another mechanism offsets the
opportunity cost mechanism.

One possibility is that the rapacity mechanism offsets the opportunity cost mechanism in the
short term. Other studies of agricultural shocks have shown instances where the rapacity mechanism
outweighs the opportunity cost mechanism (Berman et al., 2017; Koren, 2018; McGuirk and Burke,
2020; Ubilava, 2024; Ubilava et al., 2022). If these mechanisms are offsetting, we would expect
smaller short-term effects for conflict over output—reduced by the agricultural production shock and
therefore decreasing returns to predatory attacks—than over factors of production, whose returns
are not directly affected by the transitory shock (prediction 2). I follow McGuirk and Burke (2020)
in defining reports of violence against civilians, riots, and looting from ACLED as more likely to
represent conflict over output and violent conflict events reported in the UCDP database as more

likely to represent conflict over factors of production. Violence against civilians and rioting is
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unlikely to target capture of land or other factors of production and regularly involves banditry
and theft though it may also have objectives other than capture of output. Violent conflict events
recorded in the UCDP database must involve two organized actors and at least 25 battle-related
deaths; these conditions are unlikely to occur outside of situations where groups are contesting
control over territory and therefore of its factors of production.

Figure 4 presents event studies for the effects of swarm exposure on these measures of output
and factor conflict. I find null effects on swarms on conflict risk in the year of exposure and the
following year for both conflict types, with point estimates close to 0. Both conflict types show
no evidence of significant pre-exposure trends, though the coefficient on the period 9 years before
exposure is negative and significant for UCDP conflict. Effects of swarm exposure on UCDP conflict
are less consistently statistically significant. Besides the periods 0, 1, and 6 years after exposure,
all estimated effects of swarm exposure on ACLED output conflict are statistically significant at a
95% confidence level or greater. This level of confidence is only reached for 2 of 11 estimates of
post-exposure effects of swarms on UCDP conflict, with another 3 coefficients significant at a 90%
confidence level (Table A3 columns 2 and 3).

Figure 4: Impacts of swarm exposure on conflict risk over time, by conflict type
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Note: The dependent variables are dummies for any conflict event being observed in a cell in a year, with the conflict type
specified in the panel title. Each panel replicates Figure 3 for a different conflict outcome. See the figure note for Figure 3 for
more detail.

Contrary to prediction 2, if anything the point estimates for periods 0 and 1 immediately follow-
ing swarm exposure are slightly larger (though statistically indistinguishable) for output compared
to factor conflict. Decreased returns to predatory attacks therefore do not appear to explain the
null short-term effects of swarm exposure on violent conflict.

Larger long-term effects on a measure of output conflict than one of factor conflict (Table A4)
implies much of the increase in violent conflict following swarm exposure stems from banditry,
looting, terrorism, and other attacks on civilians rather than civil conflict over control of territory.

This type of violence provides the livelihood for many armed groups engaged in civil conflict. Locust
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swarm exposure does not increase the returns to such rapacity, so persistent increases in output

conflict after the immediate period of exposure must be driven by other factors.

7.2 Effects of swarm exposure on agricultural and economic activity

Long-term average increases in conflict risk could be explained by persistently reduced opportunity
costs of fighting through a permanent income mechanism (prediction 3), even though null immediate
effects are not consistent with an opportunity cost mechanism alone. Effects of swarm exposure on
the opportunity cost of fighting through the immediate productivity shock or through a permanent
income mechanism following efforts to cope with the initial shock should be observable on measures
of productivity in affected areas (prediction 5). Severe negative effects of locust swarms on agricul-
tural output are well-documented (Green, 2022; Newsom et al., 2021; Showler, 2019; Symmons and
Cressman, 2001; Thomson and Miers, 2002). While an immediate decrease in agricultural produc-
tivity and thus in the opportunity cost of fighting in affected areas seems incontrovertible, there is
less evidence on the longer-term effects of desert locusts on productivity.

I present results of tests of average long-term effects of swarm exposure on various measures
related to local economic activity in Table 3. T first test for effects on measures of agricultural pro-
ductivity, considering the annual maximum of the cell-level average monthly Normalized Difference
Vegetation Index (NDVI), the maximum annual cell-level yield across major crops estimated via
remote sensing (Cao et al., 2025), and mean crop yield across DHS survey locations in each cell
(TFPRI 2020).

Table 3: Average impacts of locust swarm exposure on indicators of economic activity

1) (2) 3) 4) (5) (6) (7)

Mean cell
Max cell estimated Cluster avg  Cluster total ~Cluster total ~Cluster tropical — Estimated

annual  Main crop yield  crop yield crop prodn crop prodn livestock net migration

NDVI (kg/ha) (kg/ha) area (ha) (metric tons)  units per km?  (per 1000 ppl)
Average effect of swarm  -0.000 35.9 54.9 -116.7* -316.7 -0.897 -4.691
exposure (0.002) (37.7) (78.7) (44.1) (218.4) (2.304) (3.391)
Observations 258346 50144 3912 4075 4075 4075 249645
Outcome control mean 0.242 2694.7 3567.8 2308.6 12751.5 41.352 -0.494
Country-Year FE Yes Yes Yes Yes Yes Yes Yes
Cell FE Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes

Note: This table presents results from separate regressions of swarm exposure on different outcomes, following Equation 1.
Differences in sample sizes are due to differences in data availability across outcomes. Crop-specific yield estimates are only
available in cells where that crop is produced. Data on DHS survey clusters are only available in cell-years with any completed
DHS surveys within the cell. NDVT is calculated from MODIS satellite imagery (Didan, 2015) as the maximum of monthly
average NDVI values in each cell for 2000-2018. Crop-specific yield data are from Cao et al. (2025)) for 1997-2015, where
the ‘main’ crop in cells with multiple crops is defined as the highest-yield crop in the cell. DHS cluster data are from the
DHS AReNA database for 1997-2018 (IFPRI 2020) and represent average values within DHS clusters at the time surveys were
conducted. Annual net cell migration for 2000-2018 is from Niva et al. (2023). All regressions include country-by-year and
cell fixed effects and controls for annual precipitation, maximum temperature, and population, and distance to capital by year
fixed effects. Observations are grid cells approximately 28 x28km by year. SEs are clustered at the sub-national region level.
*p<0.1, ¥ p <0.05, ¥** p < 0.01

On average, locust swarm exposure has no significant effect on the maximum of average monthly
cell NDVT in subsequent years and the point estimate is a fairly precise 0, indicating peak greenness is

not changing at the cell level. While I find significant decreases in NDVI in the years in which locust
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swarms are reported and the following year (Figure A2 Panel A), these are similar in magnitude
to differences in the years before exposure and the effects do not persist. Unexpectedly, I also
find significant ncreases in maximum NDVI in two post-exposure periods, though no other post-
exposure estimates are positive.

I also find no average long-term effects of swarm exposure on measures of crop yield estimated by
Cao et al. (2025) via machine learning combining administrative statistics and remotely sensed data,
or in the periods and locations where DHS surveys have been conducted (IFPRI 2020). Estimated
differences in remotely-sensed crop yield in the periods before swarm exposure are positive but
very noisy and are also positive but uniformly smaller post-exposure, and no estimated effects are
statistically significant (Figure A2 Panel B). These null long-term effects on measures of agricultural
productivity are consistent with locust swarms—a migratory pest—being a transitory shock that
does not affect agricultural productivity fundamentals. They also indicate that to the extent swarm
exposure may affect later labor productivity in affected areas this is not reflected in measures of
NDVT or crop yields at the cell level.

While swarm exposure has no long-term effect on measures of agricultural productivity, it does
significantly decrease total crop area planted in DHS survey clusters. Cluster crop production
area falls by 117 ha (5.0%) on average in the years following swarm exposure. While there is no
significant effect on total cluster crop production quantity, the point estimate is large and negative,
in line with the finding of no significant effect of swarm exposure on mean survey cluster crop yield
(Table 3 columns 3-5). The decrease in crop production could indicate a transition away from
agriculture in exposed areas. I do not find any impact of locust swarms on density of livestock
ownership (measured in Tropical Livestock Units), but the DHS AReNA database includes limited
information on other measures of household wealth which could be used to test the hypothesis that
coping with swarm exposure persistently decreases wealth.

Finally, T consider effects on migration. Leaving to search for work is a common response to
locust crop destruction (Thomson and Miers, 2002) and over 8 million people were displaced across
East Africa as a result of the 2019-2021 locust outbreak (The World Bank, 2020). Ghorpade (2024)
finds that locust swarm exposure increases stated willingness to migrate of rural individuals in
Yemen by 12 percentage points, driven by agricultural households. Using data from Niva et al.
(2023), I find that swarm exposure does not significantly affect net annual migration in subsequent
years. The point estimate is large, indicating 4.7 more people per 1000 population migrating out
of exposed areas per year on average, suggesting that areas directly affected by locust swarms
may indeed respond with more out-migration despite null average cell-level effects. There are no
significant pre-treatment differences in estimated net migration (though standard errors are large)
and no immediate effects of swarm exposure, but 8 of 11 treatment effects are negative and 3 of
these are marginally statistically significant (Figure A2 Panel C). Persistent out-migration from
affected areas could be consistent with lower labor productivity.

Taken together, the results on the effects of swarms exposure on economic outcomes at the grid

cell level in Table 3 do provide limited evidence of a possible permanent income mechanism. NDVI
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and crop yields do not decrease significantly, indicating agricultural productivity is not reduced
in years following a locust swarm on average. Livestock ownership is also not significantly lower,
which does not align with a permanent income mechanism based on an initial income shock depleting
household assets. On the other hand, significant decreases in crop production area and suggestive
increases in out-migration suggest some households leave agriculture in favor of migrating or other
activities, in line with reductions in agricultural productivity prompting a shift in occupation. If
migration is an attractive alternative to agricultural production for households in areas exposed to
locust swarms it may be the case that engaging in violent conflict would also be attractive in some
circumstances, particularly in periods of heightened grievance.

One possible reason for the non-significant average effects of locust exposure on most outcomes in
Table 3 is that these intent-to-treat estimators include too small a share of treated areas. The median
locust swarm covers around 50 km?, or 6% of the area of a 0.25 degree cell. Most DHS clusters in
cells exposed to locust swarms will likely not have experienced any agricultural destruction, so the
intent to treat effects [ estimate will be attenuated toward 0. Taking average NDVI or remotely-
sensed crop yield values or estimated net migration over the entire cell will also attenuate any
impacts in areas actually affected. Analyzing impacts of swarm exposure on violent conflict at the
grid cell level reduces measurement error from uncertainty in the exact areas exposed to locust
swarms and in where conflict events occur, and reduces concerns about spillover conflict realized
in the area surrounding affected populations rather than in their particular location. This grid
cell-level approach is less likely to capture economic impacts of swarm exposure which are likely
more concentrated in directly affected areas. More targeted intent to treat analyses focusing on
economic impacts of locust swarms only in the close vicinity of the swarm reports would be more
likely to detect effects, though raise difficulties in determining how to define exposed areas.

A growing body of evidence uses different approaches to define community-level swarm exposure
and link these to survey data, and finds persistent effects of swarm exposure on outcomes that could
imply reduced labor productivity. Most directly, Marending and Tripodi (2022) find that agricul-
tural profits of households in parts of Ethiopia exposed to locust swarms in 2014 are 20-48% lower
two harvest seasons after swarm arrival, driven by a large drop in farm revenues. This indicates
that impacts on agricultural productivity are not limited to the year of swarm exposure. Indirectly,
several studies show that young children exposed to locust swarms achieve lower educational at-
tainment (Asare et al., 2023; De Vreyer et al., 2015) and have lower height-for-age (Conte et al.,
2023; Gantois et al., 2024; Le and Nguyen, 2022; Linnros, 2017) when they are older. Such human
capital effects of swarm exposure could decrease permanent labor productivity. Additional work is
needed to further test predictions of the permanent income and opportunity cost mechanisms but
conducting such analyses is beyond the scope of this paper.

Exposure to locust swarms may increase vulnerability to future grievances through channels
other than the permanent income mechanism presented in Section 3. Desert locust swarms are
localized natural disasters with concentrated effects on agricultural production in only part of each

0.25° cell, increasing within-cell inequality which may create discontent and cause conflict (Gurr,
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2015). Swarm exposure could also have psychological effects on affected populations, as documented
in other studies of the climate-conflict relationship (see Burke et al. (2024) for a review). Locust
control is seen by many households as the responsibility of the state (Thomson and Miers, 2002).
Exposure to a locust swarm may therefore decrease trust in the state and foster or add to a sense of
grievance, particularly as many countries affected by locust upsurges had limited capacity to offer
relief to affected areas. Effects of locust swarms on religiosity may also be important. The dominant
religion in the sample countries is Islam, where locusts are mentioned as a punishment from Allah
and as a metaphor for Judgment Day, and they have similar connotations in Christianity.!> If
locust swarms increase religiosity in exposed areas this may affect the perceived returns to fighting
by increasing social, emotional, and supernatural costs, suppressing immediate violent conflict.
Increased religiosity could also help explain higher conflict incidence in exposed areas following
the onset of various civil conflicts (religion played an important role in the protests and conflicts
during and following the Arab Spring) and Islamic terror movements in the sample countries. Such
mechanisms could be tested empirically by analyzing differences in impacts of swarm exposure on
conflict by measures of proximity to governing groups and religious identity across cells, and by
considering how swarm exposure affects measures of government trust or support and of religiosity

over time.

7.3 Explaining dynamic impacts of swarm exposure on conflict

The pattern of dynamic long-term impacts of locust swarm exposure on violent conflict shown in
Figure 3 is not intuitive. Why are the largest impacts delayed, particularly given the null immediate
effects? The opportunity cost mechanism alone would suggest immediate impacts of swarm exposure
on violent conflict (prediction 1 from section 3), and that if they persist through persistent effect on
permanent income impacts should either fall over time as affected areas recover or be fairly stable
if households reach a new productivity equilibrium (prediction 4). Instead, these predictions are
rejected by the results, indicating some mechanism creating heterogeneity in dynamic impacts of
swarm exposure.

One potential source of heterogeneity could be exposure to subsequent economic shocks. These
could further lower the opportunity cost of fighting in swarm-exposed areas and cause violent conflict
if the effects from the initial locust shock was not sufficiently severe. I test for this possibility by
estimating heterogeneity in impacts of swarm exposure by whether a country is experiencing a famine

and whether a cell is experiencing a severe drought in a given year (Table 4). Swarm exposure has a

15Verse 7:133 of the Quran says “So We plagued them with floods, locusts, lice, frogs, and blood—all as clear signs,
but they persisted in arrogance and were a wicked people” in describing the punishment of Ancient Egypt. The same
punishments are described in Exodus 10 of the Bible, where verses 14-15 say “They invaded all Egypt and settled
down in every area of the country in great numbers. Never before had there been such a plague of locusts, nor
will there ever be again. They covered all the ground until it was black. They devoured all that was left after the
hail-everything growing in the fields and the fruit on the trees. Nothing green remained on tree or plant in all the
land of Egypt.” Verse 54:7 of the Quran says “They will emerge from the graves as if they were scattered locusts with
their eyes cast down” in describing the resurrection of the dead on the Day of Judgment. In the Bible, Revelations
9:1-10 describes the coming of a plague of locusts to torture “only those people who did not have the sign of God on
their foreheads” during the period of Judgment Day.
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significantly larger impact on violent conflict in countries experiencing famine, but the average effect
outside these contexts is similar to the overall average effect (column 1). On the other hand, there
is no significant difference in the effect of swarm exposure by whether a cell experienced drought
either in the current or previous year (columns 2 and 3). T cannot test heterogeneity in impacts
by subsequent exposure to locust swarms as control cells by definition have no exposure during
the sample period, but I find no heterogeneity in impacts by exposure prior to 1990 which could
have suggested either adaptation to or compounding effects of repeated swarm exposure (column
4). These results indicate that subsequent economic shocks cannot explain the patterns of dynamic

impacts of swarm exposure.

Table 4: Heterogeneity in impacts of exposure to locust swarms on violent conflict risk by exposure
to other shocks

Outcome: Any violent conflict event (1) 2) (3) (4)
Any active Any active  Any drought Any swarm
famine drought  prev. year  before 1990
in country in cell in cell in cell
Effect of exposure, No shock 0.016*** 0.011%* 0.018*** 0.017**
(0.004) (0.003) (0.004) (0.004)
Effect of exposure, Any shock 0.060*** 0.015** 0.023*** 0.019***
(0.017) (0.007) (0.008) (0.006)
Observations 301664 294353 295564 301664
p-value, test of equality of coefficients 0.010 0.511 0.527 0.626
Country-Year FE Yes Yes Yes Yes
Cell FE Yes Yes Yes Yes
Controls Yes Yes Yes Yes

Note: The table presents results from separate regressions where I estimate heterogeneous average long-term impacts of locust
swarm exposure on the probability of any violent conflict event in a cell-year by indicators of other shocks using the BJS
estimator and built-in heterogeneity option in the Stata implementation of the estimator. The famine indicator in column 1
is defined at the country-year level by whether any famine was declared. The drought indicators in columns 2-3 are cell-year
level variables, defined by whether there are at least 4 consecutive months where the SPEI is below -1.5. Swarm exposure
prior to 1990 in column 4 considers exposure in the period from 1985-1989 where there were several major locust upsurges not
considered in the definition of swarm exposure in the study sample period. At the bottom of the table I include p-values for the
test of equality of the coefficients representing effects by the presence of civil conflict. All regressions include country-by-year
and cell fixed effects and controls for annual precipitation, maximum temperature, and population, and distance to capital by
year fixed effects. Observations are grid cells approximately 28x28km by year. SEs are clustered at the sub-national region
level.
*p <0.1, ¥ p <0.05, ¥** p < 0.01

An important observation is that the gap between swarm exposure and the largest impacts
on violent conflict risks corresponds to the gap between the timing of the main swarm exposure
event in the sample period—the 2003-2005 upsurge—and the years when the general risk of conflict
increased across the sample countries due to the Arab Spring, the spread of Islamic terrorist groups,
and multiple civil wars, as shown in Figure 5 Panel A. Panel B shows that exposure to this upsurge
did not significantly increase the risk of violent conflict until 2011, the year of several uprisings
related to the Arab Spring, but that effects remain large and statistically significant in subsequent
years. I find similar patterns when looking at effects of the upsurge in different countries with
different events precipitating the spread of violent conflict (Figure B10).

As the 2003-2005 locust upsurge accounts for 72% of swarm exposure in the sample period, its
dynamic effects drive the main event study results including all swarm exposure events. Figures
3 and 5 show clearly that swarm exposure does not generally cause the immediate onset of new

violent conflicts. Instead, exposed areas appear to be more vulnerable or susceptible to be engaged
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Figure 5: Changes in conflict environment and impacts of exposure to 2003-2005 locust upsurge on
violent conflict risk

A) Swarm and conflict trends B) Event study 2003-2005 upsurge
061 .08
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044 Pre-exposure

Joint significance test
p-value: .261

ACLED violent conflict
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014

Year Year
Note: Panel A shows the share of sample cells experiencing any locust swarm or conflict event by year. Panel B
shows results for an event study of exposure to the 2003-2005 desert locust upsurge, with 2003 as the reference period,
with the same fixed effects and controls specified in Equation 1. The dependent variable is a dummy for any violent

conflict event, and treatment is defined as any locust swarm observation from 2003-2005. The bars represent 95% confi-
dence intervals using SEs clustered at the sub-national region level. Observations are grid cells approximately 28 x28km by year.

in later violent conflict precipitated by other factors, implying mechanisms related to the returns
to engaging in conflict and not just the opportunity cost of fighting.

Prediction 6 of the model provides a potential explanation: variation in local grievances, as
reflected in episodes of civil unrest, should create heterogeneity in the dynamic impacts of swarm
exposure. Null short term effects may reflect relatively peaceful conditions at the time of the main
locust exposure events, limiting the feasibility of fighting and the potential net returns. The largest
impacts of swarm exposure are realized in a period characterized by multiple popular uprisings,
civil wars, and outbreaks of Islamic militancy. Significant increases 2-6 years after exposure in the
main event study compared to null effects over this period for the 2003-2005 upsurge are consistent
with later swarm exposure events occurring closer to or during periods when heightened grievances
manifest in civil conflict.

I do not measure grievances directly, so instead I rely on situations of observable civil conflict as
proxies of contexts or almost certain heightened underlying grievances. To formally test prediction
6 1 consider whether there is heterogeneity in average long-term impacts of swarm exposure by
various indicators of civil conflict or insecurity. At the cell-year level, I measure whether there are
any concurrent violent conflict events in surrounding cells, either in the encompassing 1° cell, in the
surrounding sub-national region, or in the rest of the country outside the surrounding sub-national
region. These measures rely on the ACLED data and do not take into consideration any particular
causes of the conflict.

At the country-year level, I identify a variety of situations which led to increases in civil conflict
and insecurity in the following years during the sample period. For each of these, I define a country

as being in an insecure situation in all years after the year in which the particular situation began.
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I first consider the Arab Spring specifically, which began in late 2010 or early 2011 in a number of
sample countries. For example, civil conflict in Libya began to increase in 2011 with the start of
the Arab Spring and then continued with the subsequent civil war. Egypt underwent a revolution
in 2011 as part of the Arab Spring and experienced a coup d’etat in 2013 and continued higher
levels of insecurity. I then look at cases of revolutions and coups d’etat and of civil wars and
separatist movements. For example, the 2013 coup d’etat in Egypt falls under the former category,
and the civil war in Libya falls under the latter. Finally, I analyze the spread of (often Islamic)
terrorist organizations across the sample countries. For example, armed Islamist violence escalated
in Burkina Faso starting in 2016, with many attacks by Al Qaeda and IS affiliates that established
control over many rural parts of the country. Sudan and Somalia are categorized as subject to
Islamic terrorist organization for the entirety of the sample period.

Table 5 shows that average long-term impacts of locust swarm exposure on violent conflict are
smaller and in some cases not statistically significant in locations and areas not characterized by
some form of civil conflict, a proxy for heightened grievances. Consistent with prediction 6, effects
of swarm exposure are significantly larger in all conflict situations, and the magnitudes of these
differences are all quite large. The largest differences are by nearby violent conflict at the cell-
year level. Past swarm exposure has no effect on violent conflict in locations and periods with no
violent conflict elsewhere around the cell, in the sub-national region, or elsewhere in the country.
But cells exposed to locust swarms are much more likely to experience violent conflict when it is
occurring in surrounding areas. One possibility is that swarm exposure could be causing conflict
within the cell that spills over into the rest of the region or country. This seems unlikely given
limited evidence of conflict onset or spillovers from swarm exposure (Table B4 Figure 3). I also
find similar heterogeneity when considering violent conflict in the country outside the cell’s region,
which is less likely to reflect spillovers from swarm exposure in the cell. The other interpretation is
that violent conflict that emerges elsewhere is more likely to either target or engage areas previously
exposed to locust swarms.

Turning to country-level absorbing indicators of civil conflict or insecurity, I find that average
effects of swarm exposure are statistically and economically much larger in contexts experiencing
a given type of civil conflict. The effect of swarm exposure outside of national civil conflict situa-
tions is about half the overall average impact (Table 1), and remains significant because countries
not experiencing a given type of insecurity may be experiencing other types. Swarm exposure in
countries affected by the Arab Spring protests and uprisings increases the likelihood of any violent
conflict by 3.6pp. Exposure increases the likelihood of violent conflict by 2.9pp in countries having
experienced a revolution or coup d’etat, by 4.0pp in countries having experienced a civil war or
separatist movement, and 2.5pp in countries with active Islamic terror groups engaging in violent
conflict.

The heterogeneity in locust swarm impacts by indicators of local civil conflict or insecurity could
potentially be due to mechanisms other than grievances. First, insecurity may further decrease local

labor productivity, decreasing the opportunity cost of fighting. If effects of the initial swarm exposure
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Table 5: Heterogeneity in impacts of exposure to locust swarms on violent conflict risk by indicators
of civil conflict

Outcome: Any violent conflict event (1) (2) (3) 4) (5) (6) (7)
Any violent  Any violent Any violent Post-civil war  Post-onset
conflict in conflict in conflict in Post-onset of Post-revolution  or separatist of Islamic
surrounding  surrounding country outside  Arab Spring  or coup d’etat movement terror groups
1 deg cell sub-region sub-region in country in country in country in country
Effect of exposure, 0.001 0.001 0.001 0.009*** 0.008*** 0.008*** 0.010"**
No civil conflict (0.002) (0.001) (0.001) (0.003) (0.002) (0.002) (0.003)
Effect of exposure, Any 0.098*** 0.038"** 0.020*** 0.036*** 0.029*** 0.040*** 0.025"**
Any civil conflict (0.013) (0.008) (0.005) (0.011) (0.008) (0.011) (0.007)
Observations 301664 301664 301664 301664 301664 301664 301664
p-value, test of equality of coefficients 0.000 0.000 0.000 0.022 0.009 0.004 0.058
Country-Year FE Yes Yes Yes Yes Yes Yes Yes
Cell FE Yes Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes Yes

Note: The table presents results from separate regressions where I estimate heterogeneous average long-term impacts of locust
swarm exposure on the probability of any violent conflict event in a cell-year by indicators of civil conflict using the BJS estimator
and built-in heterogeneity option in the Stata implementation of the estimator. The civil conflict indicators in columns 1-3
are cell-year level variables, defined by the presence of any violent conflict event in the ACLED database for the stated areas
around but outside a particular cell. The indicators in columns 4-7 are absorbing variables defined at the country level based
on the timing that Arab Spring uprisings, revolutions or coups d’etat, civil wars or separatist movements, or Islamic terror
attacks began in the country. Countries not exposed to such conflicts are coded as 0 for all years. At the bottom of the table
I include p-values for the test of equality of the coefficients representing effects by the presence of civil conflict. All regressions
include country-by-year and cell fixed effects and controls for annual precipitation, maximum temperature, and population, and
distance to capital by year fixed effects. Observations are grid cells approximately 28 x28km by year. SEs are clustered at the
sub-national region level.

*p < 0.1, ¥ p < 0.05, ¥* p < 0.01

are not sufficient to motivate affected individuals to choose to fight, an additional negative shock
could provide the necessary push. In this case I would also expect impacts of swarm exposure to
be larger in periods with other negative agricultural shocks. While effects are indeed larger in years
when countries are experiencing a famine as shown in Table 4, there is no significant difference in
effects by whether a cell is experiencing a drought.

Second, areas exposed to locust swarms may be less able to defend themselves from attacks and
therefore be targeted by armed groups when these become active. The same mechanisms that would
make exposed areas more vulnerable—persistent reductions in wealth—would also make them less
attractive targets, however, so it is unclear how the expected returns to predation in these areas
would change.

The other possibility relates to the returns to engaging in violent conflict, and how grievances
may both reduce the costs of and increase expected benefits from fighting. Individuals in areas with
lower opportunity costs of fighting following a severe prior agricultural shock may generally not
find switching to fighting optimal as violent conflict is a costly and collective activity. Formation of
armed groups and recruitment of fighters will be easier in areas of greater grievances reducing the
social, emotional, and monetary costs of fighting. While swarm exposure may itself create lasting
grievances, the local variation in exposure may prevent this from leading to general mobilization
except in situations of broader grievances prompted by other factors or events, when fighting is
more accessible or there are additional potential returns to conflict.

This heterogeneity in swarm impacts relates to other studies of heterogeneous effects of agricul-
tural shocks on conflict risk. Buhaug et al. (2021) find that drought only causes the onset of civil

conflict among ethnic groups experiencing recent political marginalization, an indicator of likely
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heightened grievances. Berman and Couttenier (2015) study the short-term effects of exogenous
income shocks through international agricultural commodity prices on the risk on violent conflict in
areas producing these commodities. They find that external income shocks act as threat multipliers
affecting the “geography and intensity of ongoing conflicts” (p. 759), pointing to a likely opportunity
cost mechanism Similarly, Bazzi and Blattman (2014) find that commodity price shocks primarily
affect conflict incidence and not conflict onset.

The results on locust swarms further indicate that exposure to an agricultural shock can have
delayed effects on conflict incidence. This relates to Narciso and Severgnini (2023)’s study of the
impact of the Great Irish Famine in 1845-1850 on conflict during the Irish Revolution in 1916-
1921. That study shows that individuals in families more affected by the famine were more likely to
participate in the revolution and argues that impacts operate through persistent effects on grievances

against British rule.

8 Estimating long-term impacts of transitory shocks

Locust swarms are a unique and catastrophic agricultural shock, but the model described in Section
3 is general and predicts similar patterns of impacts on the risk of violent conflict for other severe
transitory shocks to agricultural production. In this section I first compare the impacts of locust
swarm exposure to the impacts of exposure to drought, a type of shock that has been studied much
more extensively, and consider whether the results point to similar mechanisms. I then briefly
discuss the implications of the results for different approaches to estimating impacts of transitory

economic shocks which may nevertheless have persistent effects.

8.1 Comparing locust swarms and drought

Many studies find short-term impacts of drought exposure on conflict risk,'® but I am not aware
of any considering dynamic impacts over time. To measure drought exposure I follow several of
these papers in using the Standardized Precipitation and Evapotranspiration Index (SPEI) which
combines both precipitation and the ability of the soil to retain water. The units of the SPEI
are standard deviations from the historical average within a grid cell, where deviations within
1 are typically considered near normal conditions. I use monthly data from the SPEI Global
Drought Monitor (Begueria et al., 2014) as compiled in the PRIO-GRID database. I define a cell as
experiencing a drought shock in a particular year if there are at least 4 consecutive months where
the SPEI is below -1.5, where this streak can include the last months of the previous year. This
value is chosen to reduce the probability of multiple such drought exposures during the study period.
A streak of at least 4 drought months is observed in 3.6% of all cell-years, compared to 7.7% for

streaks of at least 3 months and 22.3% for streaks of at least 2 months.'”

163ee e.g., Buhaug et al. (2021), Couttenier and Soubeyran (2014), Harari and La Ferrara (2018), Jia (2014),
Maystadt and Ecker (2014), McGuirk and Nunn (2025), Von Uexkull (2014), and Von Uexkull et al. (2016)

'"Patterns of treatment effects are similar but standard errors are much larger if I use a threshold of 5 months but
I find no significant effects with a threshold of 6 months (Table B5).
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As with locust swarm exposure I identify the first year during the sample period in which a cell
experiences a drought and consider cells to be ‘affected’ in all subsequent years. Across all sample
cells, 48.6% experience at least one drought from 1996-2014. Nearly half (48.8%) of all exposure
occurs in 2010 when around one-third of the study area was affected by drought, with no other year
accounting for more than 8% of exposure.

Figure 6 shows the results from an event study of drought exposure. Pre-exposure coefficients
are uniformly negative and small in magnitude but are statistically significant at a 95% confidence
level in 6 of 10 pre-exposure periods. Standard errors for pre-exposure periods are smaller than in
Figure 3 because nearly all exposed cells are observed for at least 10 years pre-exposure. This result
indicates a slightly lower baseline risk of violent conflict in areas ever exposed to drought compared
to those not yet or never exposed. But there is no evidence of changes in this difference over time
before the first drought exposure in the sample period. Treatment effect estimates are positive for
all post-exposure periods and are statistically significant for 10 of 11 periods. The average effect

over the 10 years post-exposure is a 1.1pp increase in the annual risk of violent conflict.

Figure 6: Impacts of exposure to drought on violent conflict risk over time
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The dependent variable is a dummy for any violent conflict event in a cell-year. The figure replicates Figure 3 but considering
drought instead of locust swarm exposure. See the figure note for Figure 3 for more detail. Drought exposure is defined as >4
consecutive months in the year with SPEI<-1.5.

Violent conflict risk increases by a statistically significant 0.7 percentage points in the year of
drought exposure. This significant increase, in contrast to null immediate effects of exposure to
a desert locust swarm, suggests droughts cause the onset of some conflict. A delay in the largest
impacts of drought exposure on violent conflict mirrors the pattern for locust swarm exposure; in the
case of drought the largest effects occur 5 to 10 years after exposure. The main drought exposure

event was in 2010, around the time that insecurity and violent conflict in the study area began
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to increase (Figure 5 Panel A), which may explain why drought causes conflict onset while locust
swarms do not. Lags in the largest impacts of drought exposure are consistent with the timing of
the largest increases in violent conflict.

Table 6 compares average long-term impacts of swarm and drought exposure. Columns 1-3
reproduce results for impacts of swarm exposure from Table 1 and Table 5. Column 4 shows
that on average, drought exposure increases the risk of any violent conflict in a given year by 0.8pp
(73%). This estimate is smaller than the average of the event study treatment period effects because
treatment effects decrease more than 10 years after drought exposure, and are no long statistically
significant starting 13 years afterward (Figure B11). The effect is also smaller than the impact of
swarm exposure, potentially reflecting the greater intensity of agricultural destruction from locust
swarms compared to drought. Column 5 shows that impacts of drought on violent conflict are
concentrated in cells with any crop land, with an even sharper difference than for effects of locust
swarms.

Column 6 tests for heterogeneity by activity of armed groups in the sub-region around exposed
cells in a given year, an indicator of local civil conflict and proxy for heightened local grievances. 1
find a precise null effect of drought exposure in cell-years with no violent conflict in surrounding cells
in contrast to a 1.8pp increase in the probability of violent conflict in cell-years with such insecurity
nearby. This relates to findings from Buhaug et al. (2021) and Michelini (2025) that the short-term
impact of drought on conflict is driven by a areas with marginalized ethnic groups (in Africa) and
areas with higher predicted conflict risk outside of drought periods (globally), respectively. Buhaug
et al. (2021) argue that drought acts like a trigger to transform preexisting grievances into violent
conflict. The heterogeneity in impact of past shock exposure by nearby civil conflict is not as large
for drought as for locust swarms, likely because the sample for the analysis of swarm exposure
includes more high-conflict years from 2015-2018 that are not included in the drought analysis

sample.

Table 6: Average impacts of exposure to agricultural shocks on violent conflict rigsk

Outcome: Any violent conflict event (1) (2) (3) (4) (5) (6)
Swarms, Z = Drought, Z =
Swarms, Z = Any conflict in Drought, Z = Any conflict in
Swarms  Any crop land region outside cell Drought Any crop land region outside cell
Average effect of shock 0.018*** 0.008***
exposure (0.004) (0.002)
Effect of exposure, Z—0 0.007 0.001 -0.000 -0.000
(0.004) (0.001) (0.001) (0.001)
Effect of exposure, Z=1 0.023*** 0.038*** 0.020*** 0.018***
(0.006) (0.008) (0.005) (0.003)
Observations 301664 301664 301664 452574 452559 452574
p-value, equality of effect by Z .025 < .001 < .001 < .001
Outcome mean, no exposure 0.028 0.028 0.028 0.011 0.011 0.011
Country-Year FE Yes Yes Yes Yes Yes Yes
Cell FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes

Note: The table reproduces results for impacts of swarm exposure from Table 1 and Table 5, and then presents the same analyses
considering impacts of drought rather than swarm exposure. See the table notes for Table 1 and Table 5 for more detail. Drought
exposure is defined as >4 consecutive months in the year with SPEI<-1.5. Observations are grid cells approximately 28 x28km
by year for 1997-2018 for swarms and 1997-2014 for drought. The sample for impacts of swarm exposure is restricted to cells
within 100 km of a swarm observation.

*p <0.1, ¥ p <0.05, ¥** p < 0.01
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The similar patterns for impacts of exposure to drought and locust swarms on the risk of violent
conflict indicate that they may be driven by similar mechanisms. The heterogeneity by local inse-
curity in particular highlights the importance of these shocks in creating conditions that increase
vulnerability to future conflict prompted by more proximate grievances.

The results also increase our confidence that the large long-term impacts of swarm exposure on
violent conflict are not driven by bias in where locust swarms are reported. Identifying drought from
remotely-sensed data does not depend on any reporting and where such droughts are realized over
time and space is plausibly random, given that the drought index is based on within cell variation
over time. Therefore, any potential omitted variable that could explain the relationship between

reported swarm exposure and conflict is unlikely to also explain the impacts of drought exposure.

8.2 Estimating the effects of economic shocks

These results have implications for research on the impacts of economic shocks. The economic
literature on weather or agricultural shocks and conflict has overwhelmingly focused on the short-
term and assumes effects of shocks are transitory—Ilasting only for the period in which the shock
occurs—or otherwise persisting for very few periods.This follows from a focus on the direct effects of
the shocks, such as decreases in agricultural productivity, which typically are transitory. A common

empirical approach is a distributed lag two-way fixed effects model which takes the form:
Conflictict = a + B1Shockict + BaShockict—1 + 0 Xiet + Vet + i + €ict (2)

This follows the persistent effects model in Equation 1 with the exception that instead of the Shock
variable representing an absorbing treatment status over subsequent years, in this transitory effects
model the outcome is unaffected in the years following a shock except as captured by the one year
lag. This lag allows for limited delays or persistence in impacts of the shock (Burke et al., 2015).

With cell fixed effects the short-term impacts in the transitory effects model are estimated
relative to conflict risk in other years in the same cell where a shock is not observed, including years
after exposure to a shock. For shocks that cause persistent increases in conflict, this implies that
the transitory effects estimate will be biased downward as a result of comparing conflict risk in the
year a shock is observed against later years with no shock but higher conflict risk caused by the
initial shock.

Table 7 shows that this is the case for locust swarms and drought, comparing estimates from
regression models assuming transitory (one year) effects or medium-term (five year) effects to the
BJS event study estimates which model the shock as a permanent treatment (for 10 post-exposure
periods) and accurately capture dynamic treatment effects. For locust swarms, the transitory effects
model estimates a highly significant 1.5pp decrease in the probability of any violent conflict in the
year of exposure relative to unaffected cells. The bias is not reduced by including 5 years of lags
in the model, which allows for persistence of effects only for the number of periods included as
lags. The year zero estimate in this model is 1.6pp lower than the event study estimates, while the

estimates for the next five periods are consistently 1.4-2-Opp lower. I can reject that the transitory
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and five-year estimates are the same as the event study estimates with high confidence, consistent
with downward bias of these models when treatment effects are not only persistent but increasing

over a long period.

Table 7: Impacts of agricultural shocks on the conflict risk, treating shocks as temporary vs. per-

sistent

1) (2) (3) (4) (5) (6)
Locust swarm Drought
Transitory 5 year Event study Transitory 5 year Event study
effects effects effects effects effects effects
Any shock during year -0.015***  -0.019*** -0.003 0.004 0.001 0.007**
(0.004) (0.005) (0.003) (0.003) (0.002) (0.003)
Any shock, 1 year lag -0.012*%* 0.005 -0.000 0.005***
(0.006) (0.004) (0.002) (0.002)
Any shock, 2 year lag -0.007 0.013*** -0.001 0.005**
(0.006) (0.005) (0.002) (0.002)
Any shock, 3 year lag -0.008 0.012%** -0.002 0.006***
(0.006) (0.004) (0.002) (0.002)
Any shock, 4 year lag 0.002 0.015%** -0.003 0.007***
(0.007) (0.005) (0.003) (0.002)
Any shock, 5 year lag -0.001 0.013** -0.004 0.015***
(0.007) (0.005) (0.004) (0.004)
Average long-term effect 0.018*** 0.008***
(0.004) (0.002)
p-value, year 0 equality 0.024 0.006 0.407 0.118
with event study
p-value, year 5 equality 0.090 0.002
with event study
Observations 301664 233104 301664 454113 327746 452574
Year FE Yes Yes Yes Yes Yes Yes
Cell FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes
Estimation TWFE TWFE BJS TWFE TWFE BJS

Note: The dependent variable is a dummy for any violent conflict event observed in a cell-year. All regressions estimate the
effect of shock exposure on violent conflict controlling for total cell population and current year measures of total precipitation
and maximum annual temperature along with cell and country-by-year fixed effects and distance to capital-by-year fixed effects.
In columns 1 and 4 the shock is assumed to only have an effect in the year it is observed, and effects are estimated using TWFE.
Columns 2 and 5 allow for persistent or delayed effects of the shock for up to 5 years after it is observed, and also include 5 lags
of precipitation and temperature. Effects are estimated using TWFE. Columns 3 and 6 present a subset of the treatment effect
estimates from the BJS event study estimator considering 10 pre-exposure and 10 post-exposure periods. These estimates are
the same as those shown in Figure 3 and Figure 6. At the bottom of these columns I also present the estimates of average
long-term effects of the shock from Table 6. At the bottom of columns 1, 2, 5, and 5 are p-values for tests of equality between
coefficients under the transitory, 5 year, and event study models. Observations are grid cells approximately 28 x28km by year
for 1997-2018 for swarms and 1997-2014 for drought. The sample for impacts of swarm exposure is restricted to cells within
100 km of a swarm observation. SEs clustered at the sub-national region level are in parentheses.

*p<0.1, ¥ p <0.05, ¥** p < 0.01

The transitory effects estimate for locust swarms—a 1.5pp decrease in violent conflict the year
locusts are observed—is very close to Torngren Wartin (2018)’s estimate of a 1.3pp decrease using
a similar method.'® He interprets the result as suggesting endogenous under-reporting of locust
swarm presence correlated with violent conflict. The much larger event study estimate for the

impact of swarms on conflict in the same year suggests the large negative estimate in the transitory

¥ Torngren Wartin (2018) employs the same general distributed lag specification with cell and country-by-year fixed
effects as in columns 1 and 2 of Table 7 but with some different weather controls and varying lags of locust presence.
His analysis is at the level of 0.5° and 0.1° cells and considers locust swarms and bands together while I focus on
more destructive swarms alone. He also includes some African countries with very few locust swarm observations
over time which I exclude, while excluding Arabian countries with extensive locust activity which I include.
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effects regression can instead be attributed to downward bias from ignoring long-term impacts of
swarm exposure on conflict risk.

In the case of drought, the transitory effects estimate for the year of exposure is a non-significant
0.4pp increase in violent conflict risk, compared to a statistically significant 0.7pp increase in the
event study estimate. While I cannot reject that these estimates are the same (p=0.407), the two
approaches would yield different conclusions with different policy implications. As with the analysis
with locust swarms, including five lagged shock variables aggravates the bias in the estimated year
zero effect, though I still cannot reject equality with the event study estimate (p=0.118). The bias
in the transitory effects estimates is generally lower when considering drought relative to locust
shocks. This can be explained by the lower average long-term effect: a 0.8pp increase in conflict
risk for drought compare to 1.8pp for locust swarms.

These results provide evidence of a potential misspecification of studies analyzing short-term im-
pacts of transitory economic shocks, if these have persistent indirect effects on outcomes of interest.
Studies of such shocks using specifications similar to Equation 2 and ignoring possible long-term
effects will generate biased short-term impact estimates to the extent the shocks have long-term
indirect impacts. This concern is a special case of contamination in estimated effects of treatment
leads and lags in settings with dynamic and heterogeneous treatment effects (Sun and Abraham,
2021), which can lead to errors in both magnitude and sign (Roth et al., 2023) as shown here par-
ticularly for the impacts of locusts swarms on violent conflict risk. A large literature has studied
this limitation of TWFE estimators and proposes a variety of event study estimators to address its
limitations including those I use to estimate long-term effects of locust swarm exposure on conflict
(Borusyak et al., 2024; Callaway and Sant’Anna, 2021; Cengiz et al., 2019; De Chaisemartin and
d’Haultfoeuille, 2024; Sun and Abraham, 2021).

Building on this literature and to provide intuition for the results in Table 7, I conduct simu-
lations estimating different regression models under several scenarios of dynamic treatment effects
(Figure A3, Table A5). Ishow that sign errors for TWFE estimators assuming transitory treatment
effects are more likely when the true effect in the treatment period is small relative to effects in later
periods. The magnitude of the bias in the transitory effects estimator depends on the true imme-
diate effect and on the average of treatment effects in subsequent periods rather than on particular
dynamics of those effects. This is because fixed effects estimators compare differences in outcomes
in a given period against the average across other periods. Intuitively, there is also less bias in
transitory effects estimates if the effects of treatment do not persist for very long. Including lagged
treatment terms attenuates this bias under constant and decreasing long-term effects of treatment,
but aggravates it under increasing long-term effects.

Attention to these estimation issues in difference-in-differences settings has been rapidly increas-
ing (see A. Baker et al. (2025) for a recent guide for practitioners). Certain difference-in-differences
methods can also be applied in settings with repeated treatments, an important consideration for
shocks such as droughts or locust swarms which may recur in the same location over time. I abstract

away from that in this study—where such recurrence is rare in the sample period—by considering
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only the first exposure during the study period and defining absorbing treatment variables. Future
work could explore dynamic effects of agricultural shocks on conflict while accounting for potential

repeated treatments.

9 Conclusion

Violent conflict can have devastating consequences for economic and human development which are
the subject of significant study even beyond the economics literature. This paper shows that expo-
sure to severe agricultural production shocks—both desert locust swarms and drought—significantly
increases long-term risk of violent conflict.

The results emphasize the limitations of individual-level conflict models focusing primarily on
the role of changing opportunity costs of fighting following a productivity shock. Exposure to locust
swarms does not cause the immediate onset of violent conflict, as predicted under an opportunity
cost mechanism. An analysis of the timing of the main locust swarm exposure event in the sample
suggests this may be due to limited popular grievances or unrest in the study area during this
period. 1 find that long-term impacts of both locust swarms and drought are concentrated in
periods of civil conflict—an indicator of heightened grievances that have escalated into violence—
due to other proximate causes, when the feasibility of fighting and expected returns are likely to
be higher and costs are lower. This results echoes a few other studies (Berman and Couttenier,
2015; Buhaug et al., 2021) but has not been emphasized in the economics literature on climate
and conflict, and has important implications for considering what areas are most likely to become
engaged in civil conflict after it is triggered by some proximate cause.

I propose a permanent income effect from strategies to cope with the initial agricultural de-
struction reducing later productivity and opportunity costs of fighting as a potential income-related
mechanism for long-run effects of locust swarm exposure on conflict risk. Swarm exposure does not
persistently affect measures of agricultural productivity at the level of the 0.25° grid cells I ana-
lyze, but it reduces agricultural production area and there is suggestive evidence that it increases
out-migration. These results add to other work showing long-term adverse production and human
capital effects of locust swarm exposure and many studies showing long-term economic impacts of
natural disasters. Further research on long-term impacts of transitory economic shocks on house-
hold measures of productivity, labor supply, food security, and wealth would help further explore
the potential role of a permanent income mechanism.

The findings suggest additional future avenues of research in the literature on climate and
conflict. I show that the methods typically used in this literature, which treat transitory climate
or weather shocks as only affecting conflict risk in the short-term when the shock directly affects
agricultural outcomes, can result in biased estimates of short-term effects when the shocks have long-
term indirect impacts. New event study analyses could test the extent and patterns of long-term
impacts of other climate or economic shocks on conflict risk. Although not a focus of this paper,

the lack of variation in the immediate impacts of precipitation and temperature deviations on
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violent conflict risk by agricultural land cover cast further doubt on whether effects on agricultural
production are the primary mechanism. The association between climate and conflict has been
demonstrated in a wide variety of settings but the mechanisms remain unclear (Burke et al., 2024;
Mach et al., 2020). A better understanding of the different mechanisms is essential to determining
the appropriate policy responses. Analyses of long-term impacts of agricultural shocks on measures
of local inequality and on psychological factors could be particularly helpful in understanding both
income- and non-income-related mechanisms.

The economic and human costs of increased conflict risk following severe agricultural shocks
highlights the importance of policy efforts to respond to such shocks. Burke et al. (2024) find
robust evidence across studies that higher living standards reduce sensitivity of conflict risk to
climate shocks. Additional research could explore whether policies that can promote resilience to
agricultural shocks also reduce conflict risk, building on existing studies looking at cash transfers
(Crost et al., 2016), insurance (Sakketa et al., 2025), improved infrastructure (Gatti et al., 2021),
and work programs (Fetzer, 2020).

The results also have implications for estimates of the economic and social costs of desert locust
outbreaks. Past research on desert locusts has argued that limited impacts of outbreaks on aggregate
national measures of agricultural production may mean expensive locust monitoring and control
operations have limited net economic benefits (Joffe, 2001; Krall and Herok, 1997), though others
have argued that local damages are extensive and motivate continued proactive locust control efforts
(Showler, 2019; Zhang et al., 2019). A consideration of the broader long-term economic and social
impacts of agricultural destruction by locust swarms—mnotably increased vulnerability to violent
conflict—could motivate greater investment in proactive locust monitoring and control, as well as
increased cross-country communication and collaboration in response to threats of locust swarms.

Beyond contributing to our understanding of the relationship between agricultural production
shocks and conflict risk, the findings are also relevant for considering multilateral policy around
climate change mitigation and adaptation. Climate change is increasing the frequency and severity
of agricultural shocks, including by creating conditions suitable for desert locust swarm formation.
These shocks impose additional costs on society through their impacts on conflict risk which should
be considered when weighing the costs and benefits of potential actions to reduce and respond to

risks from agricultural shocks.
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A Additional figures and tables

Table A1l: Summary statistics
Panel A: Yearly variables

Mean SD Min 50" 75" Max N

Any violent conflict event - ACLED 0.02 0.14 0.0 0.0 0.0 1.0 557018
Any violent conflict event - UCDP 0.01 0.10 0.0 0.0 0.0 1.0 557018
Any swarms in cell 0.00 0.07 0.0 0.0 0.0 1.0 557018
Any swarms within 100km outside cell 0.05 0.21 0.0 0.0 0.0 1.0 557018
Any swarms within 100-250km of cell 0.11 0.32 0.0 0.0 0.0 1.0 557018
Population (10,000s) 1.63 892 0.0 0.1 0.9 749.8 557018
Total annual rainfall (100 mm) 240 3.79 0.0 0.8 2.8 43.4 557018
Max annual temperature (deg C) 37.55 5.11 11.5 38.2 41.3 49.1 557018

Panel B: Fixed variables

Mean SD Min 50" 75" Max N

Any ACLED violent conflict event in cell from 1997-2018 0.13 0.33 0.0 0.0 0.0 1.0 25435
Any UCDP violent conflict event in cell from 1997-2018 0.07 0.26 0.0 0.0 0.0 1.0 25435

Any locust swarm in cell from 1985-2021 0.20 0.40 0.0 0.0 0.0 1.0 25435
Any locust swarm in cell from 1997-2018 0.09 0.29 0.0 0.0 0.0 1.0 25435
First exposed to locust swarm between 1997-2018 0.07 0.26 0.0 0.0 0.0 1.0 25435
First exposed to locust swarm in 2003-2005 upsurge 0.05 0.22 0.0 0.0 0.0 1.0 25435
Any locust swarm within 100 km from 1985-2021 0.78 0.41 0.0 1.0 1.0 1.0 25435
Any locust swarm within 100 km from 1997-2018 0.55 0.50 0.0 1.0 1.0 1.0 25435
Any cropland or pasture in cell 0.57 0.50 0.0 1.0 1.0 1.0 25435
Share of cell allocated to crops or pasture 0.23 0.32 0.0 0.0 04 1.0 25435
Any pasture in cell 0.56 0.50 0.0 1.0 1.0 1.0 25435
Share of cell allocated to pasture 0.18 0.27 0.0 0.0 0.3 1.0 25435
Any cropland in cell 0.31 0.46 0.0 0.0 1.0 1.0 25435
Share of cell allocated to crops 0.05 0.13 0.0 0.0 0.0 1.0 25435

Note: Observations are grid cells approximately 28 x28km by year. The study period covers 1997-2018. Data on locust swarm
observations is available from the FAO Locust Watch for 1985-2021. Data on conflict events are fron the ACLED and UCDP
databases. Data on population is from GPW (CIESIN, 2018). Data on precipitation and temperature are from WorldClim
(Fick and Hijmans, 2017). Values for land cover are for the year 2000 from Ramankutty et al. (2010).
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Table A2: Balance in cell characteristics by exposure to any locust swarm

All cells W/in 100km of any swarm W/in 100km of any swarm
No weights No weights Inverse exposure propensity weights
Control Treat Control Treat Control Treat
Mean Diff. Mean Diff. Mean Diff.
(SD) (SE) (SD) (SE) (SD) (SE)
Population in 2000 (10,000s) 1.22 1.32%%* 1.65 0.90*** 1.67 0.43
[6.99] (0.37) [8.67] (0.33) [8.71] (0.50)
Mean of cell nightlights 0.05 0.01** 0.05 0.00 0.05 0.00
1996-2012 (0-1) [0.04] (0.00) [0.05] (0.00) [0.05] (0.00)
Distance to national capital 707.37  -182.42***  586.82 -61.87* 586.45 17.59
(km) [405.76] (46.07) [357.73] (28.29) [358.35] (24.98)
Distance to nearest national 200.16  -40.97*  195.63 -36.45%* 194.52 8.31
boundary (km) [151.74]  (13.96)  [147.84] (11.90) [147.70] (11.54)
Percent of cell covered by 4.69 0.83 5.83 -0.31 5.89 0.63
crop land in 2000 [13.12] (0.78) [14.48] (0.69) [14.55] (0.80)
Percent of cell covered by 17.43 11.03*** 21.59 6.87* 21.79 -0.98
pasture land in 2000 [26.69] (2.40) [28.05] (2.16) [28.12] (1.59)
Percent of cell covered by 68.97 -9.98*** 61.16 -2.16 60.76 0.98
barren area in 2009 [42.75] (3.68) [43.52] (3.04) [43.58] (2.73)
Percent of cell covered by 0.08 0.10 0.10 0.08 0.10 0.01
urban area in 2009 [0.75] (0.07) [0.88] (0.07) [0.89] (0.05)
Percent of cell covered by 6.80 -1.09 7.12 -1.42 7.20 -0.07
forest area in 2009 [17.00]  (1.03)  [16.15] (0.91) [16.22] (0.92)
Percent of cell covered by 2.01 1.49** 2.92 0.58 2.94 0.20
water area in 2009 [10.70] (0.61) [12.75] (0.61) [12.81] (0.53)
Mean annual max NDVI 0.23 -0.01 0.24 -0.02 0.24 0.01
(1997-2018) [0.21] (0.02) [0.20] (0.01) [0.20] (0.01)
Mean annual rainfall 1997-2018 2.42 0.15 2.68 -0.11 2.71 0.11
(100 mm) [3.80] (0.25) [3.76] (0.17) [3.77] (0.18)
Mean annual max temperature 37.63 -1.61%* 36.70 -0.69* 36.67 -0.21
1997-2018 (deg C) [5.11] (0.45) [5.05] (0.37) [5.07] (0.38)
Mean of cell annual share of 0.09 -0.00 0.09 0.00 0.09 0.00
months with drought 1998-2014  0.03] (0.00) [0.04] (0.00) [0.04] (0.00)
I'=15.00 FF =238 F=0.64
Joint significance p <0.01 p < 0.01 p=10.824

Note: The table shows results from separate bivariate regressions of baseline or mean cell characteristics on a dummy for being
exposed to a locust swarm during the study period. The rows indicate which dependent variable is used. The first set of columns
includes all cells while the second restricts the sample to cells within 100 km of any locust swarm observation from 1997-2021.
The third set of columns includes all cells but weights observations by the inverse of the estimated propensity to have been
exposed to a locust swarm during the study period. I include results of joint tests that there is no relationship between any
of the characteristics and swam exposure. Observations are grid cells approximately 28 x28km by year. SEs clustered at the
sub-national region level are in parentheses.

*p<0.1, ¥ p <0.05, ¥*¥* p < 0.01
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Table A3: Event study estimates of impact of swarm exposure on different conflict outcomes

(1) 2 3)
Violent conflict Output conflict Factor conflict

(ACLED) (ACLED) (UCDP)

prel0 -0.006 -0.003 -0.007
(0.011) (0.005) (0.010)
pre9 -0.024*** -0.009 -0.017**
(0.008) (0.007) (0.007)

pre8 -0.006 -0.005 -0.006
(0.009) (0.007) (0.007)

pre7 0.004 -0.001 0.002
(0.008) (0.006) (0.009)

pre6 -0.007 -0.007 -0.002
(0.006) (0.006) (0.008)

preb 0.000 -0.004 0.004
(0.008) (0.006) (0.010)

pre4 0.004 0.000 -0.002
(0.009) (0.006) (0.009)

pre3 0.005 0.000 0.003
(0.008) (0.007) (0.010)

pre2 -0.002 0.000 0.001
(0.007) (0.006) (0.008)

prel 0.002 0.005 -0.001
(0.007) (0.007) (0.007)

tau0 0.000 0.002 0.001
(0.003) (0.002) (0.002)

taul 0.003 -0.001 -0.001
(0.004) (0.003) (0.002)

tau2 0.009** 0.007** 0.006*
(0.004) (0.003) (0.004)

tau3 0.009** 0.007** 0.004
(0.004) (0.003) (0.003)

taud 0.015%** 0.011%** 0.003
(0.004) (0.003) (0.003)

taub 0.013*** 0.011%** 0.008**
(0.004) (0.004) (0.004)

tau6 0.005 -0.000 0.003
(0.004) (0.003) (0.003)

tau7 0.024** 0.018*** 0.011*
(0.009) (0.005) (0.007)
tau8 0.025*** 0.021%** 0.012%**
(0.009) (0.006) (0.004)

tau9 0.021*** 0.021*** 0.004
(0.007) (0.006) (0.004)

taull 0.027*** 0.034*** 0.007*
(0.009) (0.008) (0.004)

Total annual precipitation 0.004** 0.002* -0.000
(SDs) (0.002) (0.001) (0.001)

Max annual temperature (SDs) 0.012** 0.005 0.005
(0.005) (0.004) (0.004)
Population (10,000s) 0.010*** 0.009*** 0.003***
(0.002) (0.002) (0.001)

Observations 295348 295348 295348

Note: The table shows the results of event study estimates of the impact of locust swarm exposure, with each column considering
a different conflict outcome. Estimated impacts in each time period are weighted averages across effects for swarm exposure
in particular years, calculated using the BJS estimator. Time period 0 is the year of first swarm exposure. Brackets represent
95% confidence intervals using SEs clustered at the sub-national region level. All regressions include country-by-year and cell
fixed effects and controls for annual precipitation, maximum temperature, and population, and distance to capital-by-year fixed
effects. Observations are grid cells approximately 28 x28km by year.
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Table A4: Average impacts of locust swarm exposure on different conflict types

(1) (2) (3)

Violent conflict Output conflict  Factor conflict

(ACLED) (ACLED) (UCDP)
Average effect of swarm 0.018*** 0.014*** 0.006***
exposure (0.004) (0.003) (0.002)
Observations 301664 301664 301664
Outcome mean post-2004, no exposure 0.028 0.019 0.012
Proportional effect of exposure 0.626 0.752 0.510
Country-Year FE Yes Yes Yes
Cell FE Yes Yes Yes

Controls

Note: Column 1 is the same as Table 1 column 1, and the other two columns replicate this for different conflict outcomse. The
dependent variables are dummies for any conflict event being observed in a cell in a year. See the note for Table 1 for more
detail on the estimation. Column 2 defines ‘output’ conflict as violence against civilians, riots, and looting from ACLED and
column 3 defines ‘factor’ conflict as violent conflict events reported in the UCDP database (involving defined actors and at
least 25 fatalities in a year), following McGuirk and Burke (2020).

*p <0.1, ¥ p <0.05, ¥** p < 0.01
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Figure Al: Variation in swarm timing and location during study period, by region
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Note: The figure identifies the timing of swarm observations from 1997-2018 based on information on local crop calendars for
major crops. This timing is not considered in cells with no cropland. These seasons are used to define timing of swarm exposure
used in Table 2.
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Figure A2: Impacts of exposure to locust swarms on economic outcomes over time
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Each panel replicates Figure 3 but considering a different outcome as indicated in the panel title. See the figure note for
Figure 3 for more detail.

NDVI is calculated from MODIS satellite imagery from 2000-2018 (Didan, 2015). I calculate average NDVTI in each cell-month
based on 16-day NDVI observations, and then take the maximum of these values in each cell-year. The event study is
restricted to crop cells, where NDVI is a potential proxy for agricultural production. Crop-specific yield data at the cell
level are estimated by Cao et al. (2025)) for four main crops globally from 1997-2015. I consider the ‘main’ crop in cells
with multiple crops as the highest-yield crop in the cell. Annual net cell migration for 2000-2018 is estimated by Niva et al. (2023).
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Table Ab5: Simulation: bias in estimates of short-term effects of shocks under different dynamic
treatment effects

(1) (2) 3) (4) (5)
Constant Constant Decreasing Increasing
Immediate 5 year long-term  long-term  long-term

effect only effects effects effects effects
A. True effects:
Treatment during current year 0.500*** 0.500*** 0.262*** 0.500*** 0.025***
(0.000) (0.000)  (0.000) (0.000) (0.000)
Treatment 1 year lag 0.000 0.500*** 0.262*** 0.475%** 0.050***
(0.000) (0.000)  (0.000) (0.000) (0.000)
Treatment 2 year lag 0.000 0.500*** 0.262*** 0.450*** 0.075%**
(0.000) (0.000) (0.000) (0.000) (0.000)
Treatment 3 year lag 0.000 0.500*** 0.262*** 0.425*** 0.100***
(0.000) (0.000) (0.000) (0.000) (0.000)
Treatment 4 year lag 0.000 0.500*** 0.262*** 0.400*** 0.125***
(0.000) (0.000) (0.000) (0.000) (0.000)
B. Estimated transitory effects:
Treatment during current year 0.500"** 0.431%** 0.091*** 0.336™** -0.155***
(0.000) (0.000) (0.000) (0.000) (0.000)
Difference from actual treatment effect 0.000 0.069 0.171 0.164 0.180
C. Transitory effects w/ 1st differences:
Treatment during current year 0.500*** 0.250*** 0.131*** 0.263*** 0
(0.000) (0.000) (0.000) (0.000) ()
Difference from actual treatment effect 0.000 0.250 0.131 0.237 0.025
D. Estimated lagged effects:
Treatment during current year 0.500*** 0.500%** 0.105*** 0.380*** -0.170***
(0.000) (0.000) (0.000) (0.000) (0.000)
Treatment 1 year lag 0.000 0.500%** 0.105*** 0.355"** -0.145***
(0.000) (0.000) (0.000) (0.000) (0.000)
Treatment 2 year lag 0.000 0.500%** 0.105*** 0.330%** -0.120***
(0.000) (0.000) (0.000) (0.000) (0.000)
Treatment 3 year lag 0.000 0.500%** 0.105*** 0.305*** -0.095***
(0.000) (0.000) (0.000) (0.000) (0.000)
Treatment 4 year lag 0.000 0.500%** 0.105*** 0.280*** -0.070***
(0.000) (0.000) (0.000) (0.000) (0.000)
Differences from actual treatment effect 0.000 0.000 0.157 0.120 0.195
Observations 300000 300000 300000 300000 300000

Note: I simulate 10,000 observations across 30 periods, and randomly assign 20% to be treated in period 11. I define the
outcome as taking a value of 0 for all units before period 11, and then vary the value based on different possible dynamic
treatment effects. In column (1) treatment increases the outcome by 0.5 in the initial treatment period only. In column (2)
treatment increases the outcome by 0.5 in each of the first 5 treatment periods. In column (3) treatment increases the outcome
by 0.26 in all subsequent periods. In column (4) treatment increases the outcome by 0.5 in the first treatment period, but
the effect decreases linearly over all subsequent periods. In column (5) treatment increases the outcome by 0.025 in the first
treatment period, but the effect increases linearly over all subsequent periods. The evolution of the outcome over time is shown
in Figure A3. Patterns are similar with reversed signs if I simulate negative treatment effects. I estimate three treatment effect
models for each scenario which make different assumptions about dynamic treatment effects. Panel A shows the results of event
study estimates of the true effects for the first 5 treatment periods. Panel B shows the results of TWFE estimates that assume
a transitory treatment that only affects the outcome in the initial treatment period. Panel C is similar to Panel B but includes
four lagged treatment indicators, assuming treatment effects only persist for five periods. All regressions include period and
unit fixed effects. SEs clustered at the unit level are in parentheses.

*p<0.1, ¥ p <0.05, ¥** p < 0.01

60



Figure A3: Simulation: evolution of outcome under different dynamic treatment effects
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Note: This figure shows the evolution of the simulated outcomes as described in the notes to Table A5.
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B Robustness

Figure B1: Alternative locust swarm exposure event study estimators

.06 1 :
|
~ .04 1 : ‘I‘
= | ol
:§ d ! | r i n
Ry !! | LT dill
c Bl UAGYELT TOETHTE
= o VI ui| e @ G o O Il LA 1l
° ’|| ol NS s x
g I I o T b -
= ghy] I
T -.027 | | |
& |l |
g [
> -.04_ |
< |
|
-.06 1 :
I I I I I : I I I I I I
-10 -8 -6 -4 -2 0 2 4 6 8 10
Years since first swarm exposure
A BJS 2021 o CS 2021 <& CD 2024

o SA 2021 x CDLZ 2019

The figure shows event study impacts of locust swarm exposure on the risk of any violent conflict estimated using different
methods. ‘BJS 2021 refers to the Borusyak et al. (2024) method first introduced in 2021, ‘CS 2021’ refers to Callaway and
Sant’Anna (2021), ‘CD 2024’ refers to De Chaisemartin and d’Haultfoeuille (2024), ‘SA 2021’ refers to Sun and Abraham
(2021), and ‘CDLZ 2019’ refers to Cengiz et al. (2019). Time period 0 is the year of first swarm exposure. Brackets represent
95% confidence intervals using SEs clustered at the sub-national region level. Observations are grid cells approximately
28 x28km by year. All regression include cell and year fixed effects and no controls, in contrast to the main specification which
uses BJS with cell and country-by-year fixed effects and controls, due to constraints in including these additional controls
in the Stata packages implementing some of the alternative estimators. I test the sensitivity of the main BJS estimates to
different fixed effects and controls in Figure B5.
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Figure B2: Impacts of exposure to locust swarms on violent conflict risk over different time horizons
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Each panel replicates Figure 3 but changes the number of time periods included as indicated in the panel title. See the figure
note for Figure 3 for more detail.
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Table B1: Average impacts of exposure to locust swarms on violent conflict risk by estimator

Outcome: Any violent conflict event (1) (2) (3) (4) (5) (6)
BJS 2021 (CS 2021 CD 2024 SA 2021 CDLZ 2019 TWFE
Average post-treatment effect 0.014**  0.014***  0.013***  0.015*** 0.016%** 0.017**
(0.005) (0.005)  (0.004)  (0.004) (0.005) (0.006)
Observations 295348 301664 301664 301664 301664 301664

Note: The table shows the results from estimating average long-term impacts of swarm exposure on violent conflict using
different estimators. ‘BJS 2021’ refers to the Borusyak et al. (2024) method first introduced in 2021, ‘CS 2021’ refers to
Callaway and Sant’Anna (2021), ‘CD 2024’ refers to De Chaisemartin and d’Haultfoeuille (2024), ‘SA 2021’ refers to Sun and
Abraham (2021), ‘CDLZ 2019’ refers to Cengiz et al. (2019), and ‘TWFE’ refers to the two-way fixed effects specification
shown in Equation 1. As in Figure B1, all regression include cell and year fixed effects and no controls, in contrast to the
main specification which uses BJS with cell and country-by-year fixed effects and controls, due to constraints in including these
additional controls in the Stata packages implementing some of the alternative estimators. The results in column 1 using BJS
therefore differ from those in Table 1 column 1 which follow the main specification. The purpose of the table is to test sensitivity
of the estimates to the choice of estimator. Observations are grid cells approximately 28 x28km by year. SEs are clustered at
the sub-national region level.

*p<0.1, ¥ p <0.05, ¥** p < 0.01

Table B2: TWFE average impacts of exposure to locust swarms on violent conflict risk by land

cover
Outcome: Any violent conflict event (1) (2) (3)
Land =
Any crop or Land —
All land pasture land  Any crop land
Exposed to any locust swarm 0.020** 0.005 0.006
(0.005) (0.006) (0.006)
Total annual precipitation 0.004** 0.002* 0.002*
(SDs) (0.002) (0.001) (0.001)
Max annual temperature (SDs) 0.014** 0.012** 0.013**
(0.005) (0.006) (0.006)
Population (10,000s) 0.009*** 0.026** 0.007
(0.002) (0.011) (0.006)
Exposed to any locust swarm 0.017** 0.021**
x Land=1 (0.008) (0.009)
Total annual precipitation (SDs) 0.002 0.003*
x Land=1 (0.002) (0.002)
Max annual temperature (SDs) 0.001 0.000
x Land=1 (0.004) (0.005)
Population (10,000s) -0.018 0.002
x Land=1 (0.011) (0.006)
Observations 301664 301664 301664
Outcome mean post-2004, no exposure 0.028 0.028 0.028
Country-Year FE Yes Yes Yes
Cell FE Yes Yes Yes
Controls Yes Yes Yes

Note: The table replicates the results in Table 1 but using a two-way fixed effects (TWFE) estimator. Column 1 includes no
land cover interactions and the other two interact all right-hand side variables (except cell fixed effects) with cell land cover
dummies. The ‘Land=1’" rows show the coefficients for the interaction of right-hand side variables with cell land cover dummies
indicated in the column heading. The outcome mean for control cells is shown for post-2004 for comparison with exposure
impacts in the period after the majority of swarm exposure occurred. All regressions include country-by-year, cell, and distance
to capital by year fixed effects in addition to the controls shown. Observations are grid cells approximately 28x28km by year.
SEs are clustered at the sub-national region level.

*p<0.1, ¥* p < 0.05, ¥** p < 0.01
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Figure B3: Estimated coefficients from Equation 1 with different SEs
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Note: The outcome variable is a dummy for any violent conflict observed. The figure shows 95% confidence intervals for estimates
from Table B2 column (1) applying different clustering for the SEs. Regions are clusters of sub-national administrative units
constructed so that each one includes at least 32 grid cells. Observations are grid cells approximately 28x28km by year.
Regressions also include country-by-year and cell FE.
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Figure B4: Sensitivity of locust swarm exposure event study results to different specifications
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Note: Each event study replicates Figure 3 but changes some aspect of the specification as indicated in the legend. Time period
0 is the year of first swarm exposure. Brackets represent 95% confidence intervals using SEs clustered at the sub-national
region level. Observations are grid cells approximately 28 x28km by year. All regressions estimate dynamic effects of swarm
exposure on violent conflict risk using the BJS estimator, and include country-by-year and cell fixed effects and controls for
annual precipitation, maximum temperature, and population, and distance to capital by year fixed effects unless otherwise
stated. The year and region-year FE specifications replace country-by-year FE with FE at these levels, where region indicates
the same sub-national regions used in clustering the SEs. The propensity-year FE specification adds estimated swarm exposure
propensity by year fixed effects; the estimation of these propensities is explained in the Empirical approach section.
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Figure Bb: Sensitivity of average impacts of locust swarm exposure on violent conflict risk to
alternative specifications
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Note: Each estimate and 95% confidence interval is from a separate regression replicating Table 1 column 1 with a given
modification. The dashed gray line indicates the main estimate from Table 1 column 1.

The main specification includes controls for precipitation, temperature, and population at the cell-year level and cell,
country-by-year, and distance to capital-by-year FE. Each coefficient is associated with a specific change in this specification.
‘Alt.” weather controls replace the rainfall and temperature measures from WorldClim with measures from CHIRPS and
ERADB5, respectively. The bottom three specifications add additional controls: 1 year lags of precipitation and temperature, any
agricultural land-by-year FEs, and estimated swarm exposure propensity-by-year FEs.

Figure B6: Sensitivity of average impacts of locust swarm exposure on violent conflict risk to
alternative samples
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Note: Each estimate and 95% confidence interval is from a separate regression replicating Table 1 column 1 with a given
modification. The dashed gray line indicates the main estimate from Table 1 column 1.

The main specification includes all years from 1997-2018 and excludes cells more than 100 km from any swarm report and outside
the range of common support of estimated swarm exposure probability. Panel A shows results varying the set of included cells.
I first vary whether cells more than 100 km from any swarm report and outside the range of common support of estimated
swarm exposure probability are excluded. I then maintain the main sample restrictions but add additional restrictions. I drop
countries where Showler and Lecoq (2021) report insecurity prevented some locust control operations during the sample period
and cells that experienced violent conflict during the 2003-2005 locust upsurge which might have prevented locust reporting.
Finally I drop countries in particular geographic regions.

Panel B shows results from dropping individual years when locust swarm exposure events occurred.
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Figure B7: Impacts of exposure to locust swarms on violent conflict risk over time, imputing swarms
in high-propensity areas
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Each panel replicates Figure 3 but changes the imputation of potential ‘missing’ locust swarms. In each case, I assign a cell as
experiencing a locust swarm if its estimated propensity of exposure (over the whole study period) is above a certain level in
any year where a locust swarm was reported within 100 km of the cell. T then define exposure based on the first year such a
swarm is imputed, and estimate the event study as previously. See the figure note for Figure 3 for more detail on the estimation.
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Figure B8: Simulations of missing swarm observations
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Note: The figures show the results from estimating Equation 1 in simulations imputing the presence of increasing shares of
unreported locust swarms in cell-years with a locust swarm reported within 100 km. For each share, I run 100 simulations
randomizing which cell-years are imputed with an unreported swarm, recalculating the swarm exposure treatment variable,
and estimating the average long-term impact of swarm exposure on violent conflict risk. In Panel A, I only impute swarms
in cell-years both experiencing violent conflict and within 100 km of a reported locust swarm, to simulate effects of missing
swarm reports in insecure areas. In Panels B and C, I impute swarms across all cell-years within 100 km of a reported locust
swarm. Panels A and B report the average estimated effect across all simulations by share of imputed swarms, along with a
95% confidence interval for these estimates. Panel C reports the share of simulations where the p-value for the coefficient on
swarm exposure is less than 0.05, by share of imputed swarms.
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Figure B9: Dynamic impacts of swarm exposure on violent conflict risk at different scales
A) 0.5 degree cells B) 1 degree cells
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Each panel replicates Figure 3 estimating dynamic impacts of locust swarm exposure of the risk of any violent conflict event
using the BJS method at different spatial scales. The main analysis uses 0.25° cells. When collapsing to larger cells I take the
maximum of the swarm exposure and violent conflict variables and the mean of control variables across smaller cells within the
aggregate cell. All regressions include country-by-year and cell fixed effects and controls for annual precipitation, maximum
temperature, and population, and distance to capital by year fixed effects. SEs are clustered at the sub-national region level,
which is assigned based on the region of the majority of 0.25° component cells.

Table B3: Average impacts of swarm exposure on violent conflict risk at different scales

(1)

Outcome: Any violent conflict event

(2)

(3) (4) () (6)

Average effect of swarm 0.018** 0.025*** 0.028*** 0.131*** 0.118** 0.096***
exposure (0.004)  (0.007)  (0.011)  (0.032)  (0.033)  (0.037)
Observations 301664 93940 30763 301664 93940 30763
Outcome mean post-2004, no exposure 0.028 0.067 0.128 0.028 0.067 0.128
Proportional effect of exposure 0.623 0.368 0.216

Country-Year FE Yes Yes Yes Yes Yes Yes
Cell FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes
Cell size (degrees) 0.25 0.5 1 0.25 0.5 1
Violent conflict outcome Any Any Any SDs SDs SDs

Note: The table replicates the results in Table 1 column 1 at different spatial scales, as presented in the note to Figure B9.
Columns 1-3 show absolute effects on a dummy for any violent conflict while columns 4-6 show relative effects on the standard
deviation in the probability of any violent conflict. The latter approach maintains comparability in effect sizes as the baseline

risk of any conflict in a cell-year increase with cell size.
*p<0.1, ¥ p <0.05, ¥** p < 0.01
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Table B4: Average impacts of direct and spillover exposure to locust swarms on violent conflict risk

Outcome: Any violent conflict event (1) (2)
All swarms  2003-2005 upsurge swarms

Exposed to swarm 0.020***

(0.005)
Exposed to swarm w/in 100km 0.001
outside cell (0.003)
Exposed to swarm 0.018***

(0.005)

Exposed to swarm w/in 100km 0.011*
outside cell (0.006)
Observations 301664 301664
Country-Year FE Yes Yes
Cell FE Yes Yes
Controls Yes Yes

Note: The table presents results from estimating Equation 1 but including a spillover swarm exposure variable based on the
first year a swarm is outside the cell but within 100 km of a cell centroid. As with within-cell swarm exposure, spillover swarm
exposure is an absorbing treatment that takes a value of 1 in all years after the first exposure in the study period. Column 1
considers all swarm exposure events while column 2 focuses on the 2003-2005 upsurge. All regressions include country-by-year
and cell fixed effects and controls for annual precipitation, maximum temperature, and population, and distance to capital by
year fixed effects. SEs are clustered at the sub-national region level. Observations are grid cells approximately 28 x28km by
year.

*p< 0.1, ¥ p<0.05, ¥* p < 0.01
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Figure B10: Changes in conflict environment and locust exposure event studies by country
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Note: The figure replicates Fighre 5 for Libya, Burkina Faso, and Egypt alone, which were selected because of the strong
concentration of locust exposure during the 2003-2005 upsurge. Conflict in Libya began to increase in 2011 with the start of
the Arab Spring and the subsequent civil war. Armed Islamist violence escalated in Burkina Faso starting in 2016, with many
attacks by Al Qaeda and IS affiliates that established control over many rural parts of the country. Egypt underwent a
revolution in 2011 as part of the Arab Spring and experienced a coup d’etat in 2013 and continued higher levels of insecurity.
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Table B5: Robustness of drought estimates to changing number of consecutive drought months

Outcome: Any violent conflict event (1) (2) (3) (4) (5) (6)
5 month, Z = 6 month, Z =
5 month, Z = Any conflict in 6 month, Z =  Any conflict in
5 month Any crop or country outside § month Any crop or country outside
drought  pasture land sub-region drought  pasture land sub-region
Average effect of shock 0.004** 0.001
exposure (0.002) (0.002)
Effect of exposure, Z=0 -0.002 0.000 -0.003* 0.001
(0.002) (0.001) (0.002) (0.001)
Effect of exposure, Z—1 0.008*** 0.005** 0.004 0.001
(0.003) (0.003) (0.003) (0.002)
Observations 454986 454971 454986 455310 455300 455310
Outcome mean, no exposure 0.012 0.012 0.012 0.012 0.012 0.012
Country-Year FE Yes Yes Yes Yes Yes Yes
Cell FE Yes Yes Yes Yes Yes Yes
Controls Yes Yes Yes Yes Yes Yes

Note: The table reproduces columns 4-6 of 7?7 changing the definition of what constitutes a drought. The main definition uses
at least 4 consecutive months of drought (observed in 3.6% of cell-years), and the alternative definitions presented here use
thresholds of 5 months (1.8% of cell-years) and 6 months (1.1%).

*p<0.1,** p <0.05, *** p < 0.01

Figure B11: Event study impacts of drought exposure with 14 years of pre- and post-exposure
estimates
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The figures replicates Figure 3 but changes the number of time periods included as indicated in the panel title. See the figure
note for Figure 3 for more detail.
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C Desert locusts background

Desert locusts (Schistocerca gregaria) are a species of grasshopper always present in small numbers
in desert ‘recession’ areas from Mauritania to India (Figure C1). They usually pose little threat
to livelihoods but favorable climate conditions in breeding areas—periods of repeated rainfall and
vegetation growth overlapping with the breeding cycle—can lead to exponential population growth.
For example, the 2019-2021 locust upsurge persisted in large part because of repeated heavy pre-
cipitation out of season due to cyclones, prompting explosive reproduction (Cressman and Ferrand,
2021). The 2003-2005 upsurge was initiated by good rainfall over the summer of 2003 across four
separate breeding areas. This was followed by two days of unusually heavy rains in October 2003
from Senegal to Morocco, after which environmental conditions were favorable for reproduction over
the following 6 months (FAO and WMO 2016).

Figure C1: Desert locust recession and breeding areas
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Source: Symmons and Cressman (2001). The recession area is the area in which desert locusts are most commonly found. The
arrows indicate typical directions of downwind locust migration from breeding areas at different times of year.

Unique among grasshopper species, after reaching a particular population density desert locusts
undergo a process of ‘gregarization’ wherein they mature physically and form large bands or swarms
which move as a cohesive unit (Symmons and Cressman, 2001). Locust bands may extend over
several kilometers and alternate between roosting and marching, typically downwind (FAO and
WMO 2016). In this paper, I focus my analysis on gregarious swarms of adult desert locusts and
set aside observations of locusts in other phases.

Locust swarms form when bands of locusts remain highly concentrated when they reach the adult
stage and become able to fly. Swarms vary in their density and extent (Symmons and Cressman,
2001). The average swarm includes around 50 locusts per m? with a range from 20-150, and can
cover under 1 square kilometers to several hundred (Symmons and Cressman, 2001). About half
of swarms exceed 50 km? in size (FAO and WMO 2016), meaning swarms typically include over a
billion individuals.

The formation of swarms can lead to ‘outbreaks,” where locusts spread out from their largely
desert initial breeding areas. Locusts in swarms have increased appetites and accelerated reproduc-
tive cycles, and are thus particularly threatening to agriculture. The FAO distinguishes different
levels of locust swarm activity (Symmons and Cressman, 2001). I use the terms ‘outbreak’ and
‘upsurge’ interchangeably to refer to any locust swarm activity. Few locust swarms are observed
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outside of major outbreaks, as conditions favoring swarm formation tend to produce large swarms
which reproduce and spread rapidly and are very difficult to control.

Figure C2: Desert locust observations by year
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Source: Cressman and Stefanski (2016). Territories are generally individual countries.

The frequency of large-scale outbreaks has fallen since around the 1980s (Figure C2), in large
part due to increases in coordinated preventive operations (Cressman and Stefanski, 2016). But
climate change is expected to increase the risk of locust swarm formation and upsurges. Desert
locusts can easily withstand elevated temperatures and the increased frequency of heavy rainfall
events can create conditions conducive to population growth (McCabe, 2021; Qiu, 2009; Youngblood
et al., 2023).

As illustrated by Figure 1, locust swarms are not observed with any regularity over time or
space. Desert locusts are migratory, moving on after consuming all available vegetation, and out-
side of outbreak periods are ultimately restricted to desert ‘recession’ areas. Unlike many other
insect species, therefore, the arrival of a desert locust swarm does not signal a permanent change
in local agricultural pest risk. Instead, the arrival of a swarm can be considered a locally and
temporally concentrated natural disaster where all crops and pastureland are at risk (Hardeweg,
2001). Figure C3 illustrates how exposure to a locust swarm does not significantly affect the risk of
exposure over the following years, consistent with exposure being a function of quasi-random varia-
tions in wind patterns and flight duration during swarm outbreaks. The only period in which cells
exposed to locusts are more likely to experience a later locust swarm is in the period immediately
after exposure, which reflects that many locust outbreaks last more than one year.

Locust swarms are migratory and fly downwind from a few hours after sunrise to an hour or so
before sunset when they land and feed. Swarms do not always fly with prevailing winds and may
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Figure C3: Impact of swarm exposure on future exposure risk
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Note: The figure shows an event study of the impact of swarm exposure on the probability of having any locust swarm recorded
in a subsequent year for the study period 1997-2018. By construction, none of the exposed areas had any locust swarm recorded
in the years preceding their first exposure since 1990, and all had a locust swarm present in the year of exposure.

wait for warmer winds. Small deviations in the positions of individual locusts in the swarm can also
lead to changes in swarm flight trajectory, making their movements difficult to predict. Seasonal
changes in these winds tend to bring locusts to seasonal breeding areas at times when rain and the
presence of vegetation is most likely, allowing them to continue breeding (FAO and WMO 2016).

Patterns in swarm movements lead to local variation in locust swarm exposure. After taking off,
swarms fly for 9-10 hours rather than landing as soon as they encounter new vegetation. A swarm
can easily move 100 km or more in a day even with minimal wind (Symmons and Cressman, 2001).
Consequently, the flight path of a locust swarm will include both affected and unaffected areas, with
the affected areas determined by largely by patterns of wind direction and speed over time from the
initial swarm formation in breeding areas. Figure C4 illustrates the variation in areas affected by
locust swarms over space around Mali. Swarm reports are densely clustered in the breeding areas in
southern Mauritania where locust swarms reproduced in summer 2004. Outside of this area there
is considerable variation in where swarms were reported, with distances between reported swarms
over time consistent with typical flight distances.

These movement characteristics inform efforts to predict locust swarm movements, but these
remain highly imprecise. The desert locust bulletins produced monthly by the FAO include forecasts
of areas at risk of desert locust activity, but the areas described are quite large, often encompassing
several countries in periods with increased swarms. While breeding regions and the broad areas at
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Figure C4: Reports of locust swarms around Mali
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Note: The figure illustrafé€“the grid cells exposed to locusts swarms for the area around*4€ country of Mali. Locust swarm
reports are from the FAO Locust Watch database. Panel A overlays these reports on a map of the share of agricultural land
area in each cell (Ramankutty et al., 2010), while Panel B illustrates the timing of first exposure to locust swarms.

risk over different time periods can generally be predicted with some accuracy (Latchininsky, 2013;
Samil et al., 2020; Zhang et al., 2019), predicting specific local variation in swarm presence remains
a challenge due to the multiple factors influencing specific flight patterns (FAO and WMO 2016).

While desert locusts can exhibit some preferences over types of vegetation, avoiding woody
plants, dry vegetation, and some toxic plants in particular, swarms of locusts in their gregarious
phase are less selective than solitary adults or nymphs (Despland, 2005; Despland and Simpson,
2005). The size of locust swarms and their polyphageous nature has led them to be considered
the world’s most dangerous and destructive migratory pest (Cressman et al., 2016; Lazar et al.,
2016). A small swarm covering one square kilometer consumes as much food in one day as 35,000
people and the median swarm consumes 8 million kg of vegetation per day (FAO, 2023a), without
preference for different types of crops (Lecoq, 2003.

The arrival of a locust swarm can therefore lead to the total destruction of local agricultural
output (Showler, 2019). During the last locust upsurge in 2003-2005 in North and West Africa, 100,
90, and 85% losses on cereals, legumes, and pastures respectively were recorded, affecting more than
8 million people (Brader et al., 2006; Renier et al., 2015). Damages to crops alone were estimated
at $2.5 billion USD and $450 million USD was required to bring an end to the upsurge (ASU, 2020).
Over 25 million people in 23 countries were affected during the most recent 2019-2021 upsurge and
damages were estimated to reach $1.3 billion (Green, 2022), with control efforts—including treating
over 2 million hectares with pesticides—estimated to have prevented over $1 billion in damages
(Newsom et al., 2021).

An important result of the local variation in locust swarm damages during outbreaks is that
macro level impacts may be muted, since outbreaks occur in periods of positive rainfall shocks which
tend to increase agricultural production in unaffected areas. Several studies find that impacts of
locust outbreaks on national agricultural output and on prices are minimal, despite devastating
losses in affected areas (Joffe, 2001; Krall and Herok, 1997; Showler, 2019; Thomson and Miers,
2002; Zhang et al., 2019). Chatterjee (2022) finds that wheat yields are 12% lower on average in
Indian districts typically affected by desert locusts in years of locust outbreaks, in contrast to very
large decreases in the specific areas exposed to locust swarms in those years.

Farmers have no proven effective recourse when faced with the arrival of a locust swarm, though
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activities such as setting fires, placing nets on crops, and making noise are commonly attempted.
While these may slow damage they have little effect on locust population or total damages (Dobson,
2001; Hardeweg, 2001; Thomson and Miers, 2002). Desert locusts live 2-6 months and swarms
continue breeding and migrating until dying out due to a combination of migration to unfavorable
habitats, failure of seasonal rains in breeding areas, and control operations (Symmons and Cressman,
2001). The only current viable method of swarm control is direct air or ground spraying with
pesticides (Cressman and Ferrand, 2021). These control operations do not prevent immediate
agricultural destruction as they take some time to kill the targeted locusts, but will limit their
spread. The 2003-2005 locust upsurge ended due to lack of rain and colder temperatures which
slowed down the breeding cycle, combined with intensive ground and aerial spraying operations
which treated over 130,000 km? at a cost of over US$400 million (FAO and WMO 2016).

Desert locust control is most effective before locust populations surge, and the FAO manages an
international network of early monitoring, warning, and prevention systems in support of this goal
(Zhang et al., 2019). While improvements in desert locust management have been largely effective in
reducing the frequency of outbreaks (as seen in Figure C2), many challenges remain. Desert locust
breeding areas are widespread and often in remote or insecure areas. Small breeding groups are easy
to miss by monitors, and swarms can migrate quickly. In addition, control operations are slow and
costly, resources for monitoring and control are limited outside of upsurges, and the cross-country
nature of the thread creates coordination issues. Insecurity may also limit locust control activities
(Showler and Lecoq, 2021).
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