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Abstract: We study from both a theoretical and an empirical perspective how a network of military 

alliances and enmities affects the intensity of a conflict. The model combines elements from 

network theory and from the politico-economic theory of conflict. We postulate a Tullock contest 

success function augmented by an externality: each group’s strength is increased by the fighting 

effort of its allies, and weakened by the fighting effort of its rivals. We obtain a closed form 

characterization of the Nash equilibrium of the fighting game, and of how the network structure 

affects individual and total fighting efforts. We then perform an empirical analysis using data on 

the Second Congo War, a conflict that involves many groups in a complex network of informal 

alliances and rivalries. We estimate the fighting externalities, and use these to infer the extent to 

which the conflict intensity can be reduced through (i) removing individual groups involved in the 

conflict; (ii) pacification policies aimed at alleviating animosity among groups. 
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1 Introduction

Alliances and enmities among armed actors – be they rooted in history or in mere tactical consid-
erations – are part and parcel of warfare.1 In many episodes, especially in civil conflicts, they are
shallow links that are not sanctioned by formal treaties or war declarations. Even allied groups
retain separate agendas and pursue self-interested goals in competition with each other. The com-
mand of armed forces remains decentralized, and coordination is minimal.

Understanding the role of informal networks is important, not only for predicting outcomes,
but also for implementing policies to contain or put an end to violence. These may be diplomatic
initiatives promoted by international organizations to restore dialogue and reduce animosity be-
tween conflict participants, or military interventions of external forces against specific groups. Yet,
with only few exceptions, the existing political and economic theories restrict attention to conflicts
among a small number of players, and do not consider network aspects. In this paper we construct
a theory of conflict focusing explicitly on informal networks of alliances and enmities, and apply it
econometrically to the study of the Second Congo War (1998-2003) and its aftermath.

The theoretical benchmark is a contest success function, henceforth CSF (see, e.g., Grossman
and Kim 1995, Hirshleifer 1989, Skaperdas 1992). In a standard CSF, the share of the prize accruing
to each group is determined by the amount of resources (fighting effort) that each of them commits
to the conflict. In our model, the network of alliances and enmities modifies the sharing rule of a
standard CSF by introducing additional externalities. More precisely, we assume that the share
of the prize accruing to group i is determined by the group’s relative strength, which we label
operational performance, henceforth OP. In turn, the OP is determined by group i’s own fighting
effort and by the fighting effort of its allied and enemy groups. The fighting effort of group i’s
allies increases group i’s OP, whereas the fighting effort of its enemies decreases it. Thus, each
group’s fighting effort affects positively its allies’ OP and negatively its enemies’. Instead, the costs
of fighting are borne individually by each group. This raises a motive for strategic behavior among
both enemy and allied groups. In particular, there is not even coordination between allies: all
agents determine their effort in a non-cooperative way, and alliances are loose links.2 The complex
externality web affects the optimal fighting effort of all groups.

We provide an analytical solution for the Nash equilibrium of the game. Absent other sources
of heterogeneity, the fighting effort of each agent hinges on a measure of network centrality which is
related to the Bonacich centrality (Ballester, Calvo-Armengol and Zenou 2006). Our centrality is
approximately equal to the sum of the Bonacich centrality related to the network of enmities, and
the (negative-parameter) Bonacich centrality related to the network of alliances. The equilibrium
share of the prize accruing to each player and the associated welfare (i.e., the share of the prize
net of the fighting effort) have simple expressions. Intuitively, a group’s welfare is increasing in the
number of its allies and decreasing in the number of its enemies.

The ultimate goal of the theoretical analysis is to predict how the network of military alliances
and rivalries affects the overall conflict intensity. This is measured by the sum of the fighting efforts

1Ghez (2011) distinguishes between tactical, historical and natural alliances. Tactical alliances are formed ”to
counter an immediate threat or adversary that has the potential to challenge a state’s most vital interests” (p.
20). They are instrumental and often opportunistic in nature. Historical alliances are more resilient insofar as they
hinge on a historical tradition of cooperation. However, they often remain informal. Natural alliances imply a more
profound shared political culture and vision of the world (e.g., Western Europe and the U.S.). Contrary to tactical and
historical alliances, natural alliances often are formalized relationships. Our study focuses on tactical and historical
alliances/enmities. In our theory, natural allies can be viewed as merged actors acting in a perfectly coordinated
fashion.

2In some historical examples alliances are more than shallow links. Our theory can incorporate strong alliances
(e.g., between the U.K and the U.S. during WWII) by treating them as merged unitary groups.

1



of all contenders (total rent dissipation), which is our measure of the welfare loss associated with
a conflict. We show that network externalities are a key driver of the escalation or containment of
violence.

As an illustrative example, we analyze a ”regular” network, in which the number of alliances
and enmities is invariant across groups. We show that conflict intensity and rent dissipation are
maximized when all groups are connected by enmity links. In this case, the outcome is a Hobbesian
pre-contractual homo homini lupus society. When externalities are sufficiently strong, the cost of
conflict may offset the social surplus in this society. To the opposite extreme, conflict and rent
dissipation are minimized (and, possibly, vanish) in networks where all groups are allied, as in
Rousseau’s well-ordered society governed by the social contract. The well-ordered society may be
a surprising outcome in a non-cooperative contest between self-interested agents. The crux of the
result is that the marginal product of fighting effort decreases in the number of alliances, because
they dilute the marginal benefit from exercising individual fighting effort. For sufficiently strong
alliance externalities, the incentive to fight vanishes altogether. The standard free-riding problem
has a benign effect in our model, since war effort has no social value. The peaceful outcome can be
viewed as representing a society in which the system of institutional checks and balances reduces
the return to opportunistic behavior.

In the second part of the paper, we perform an empirical analysis based on the structural equa-
tions of the model. We focus on the Second Congo War, sometimes referred to as the ”Great African
War”. This is a big conflict, with an estimated death toll of 3-to-5 million lives (Autesserre 2008;
Olsson and Fors 2004). It involves many groups, and a rich network of alliances and enmities.3 To
identify the network of alliances and enmities we use information from the Stockholm International
Peace Research Institute (SIPRI), supplemented by information from the Armed Conflict Loca-
tion Event Database (ACLED). We assume that the network is exogenous and time-invariant – an
assumption that conforms with the data for the period considered (see the discussion in section
3.3) – and proxy fighting effort by the number of fighting events in which each group is involved.
The estimated networks of enmities and alliances feature numerous intransitivities, showing that
the Second Congo War can by no means be described as a fight between two unitary opposing
camps (see Figure 6 below). Our estimation strategy exploits panel variations in the yearly fighting
efforts exerted by 85 armed groups over the 1998-2010 period. Controlling for group fixed effects
and time-varying unobserved heterogeneity we regress the individual fighting effort of each group
on the total fighting efforts of its degree-one allies and enemies, respectively. Since these are en-
dogenous and subject to a reflection problem which is standard in regressions involving networks
(see Bramoullé, Djebbari and Fortin 2009; Liu et al. 2011), we use an IV strategy similar to that
used by Acemoglu, Garcia-Jimeno and Robinson (2014). In particular, our identification exploits
the exogenous variation in the average weather conditions facing, respectively, the set of allies
and of enemies of each group. Our focus on weather shocks is motivated by the recent literature
documenting that these have important effects on fighting intensity (see Dell 2012, Hidalgo et al.
2010, Jia 2014, Miguel, Satyanath and Sergenti 2004, and Vanden Eynde 2011). Without imposing
any restriction on the estimation procedure, we find that the two estimated externalities have the
(opposite) sign pattern, which aligns with the predictions of the theory.

After estimating the size of the network externalities, we perform two sets of policy-oriented
counterfactual experiments. First, we remove sequentially each of the groups in conflict while letting
all surviving group re-optimize their fighting effort. This key-player analysis is a policy-relevant
exercise, as it can help international authorities to single out armed groups whose decommissioning
would be most effective for scaling down a conflict. Interestingly, we find that while on average

3More details about the historical context of this conflict are provided in Section 3.1.
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more active groups have a higher rank in the key player analysis, the relationship is far from
one-to-one. For instance, the two factions of the Rally for Congolese Democracy (RCD) – Goma
and Kisangani factions – rank, respectively, first and third in terms of their involvement in war
episodes. Yet, their hypothetical removal would not contribute much to scaling down the conflict,
because of their position in the network. According to our estimates, removing RCD-K would
actually increase total violence, as the muted fighting of this group would be more than offset by
the average increase in the effort of other armed groups. In contrast, the removal of the Hutu
rebel group denominated Democratic Forces for the Liberation of Rwanda (FDLR) would yield a
14% reduction in violence. Our analysis also highlights the prominent role of foreign actors: eight
out of the twenty groups bearing the largest responsibility for the escalation of violence are foreign
national armies. Removing all foreign troops would reduce total violence by 24%, a large effect.

We also study a policy aimed at pacifying armed groups without removal, i.e., rewiring enmity
links into neutral or alliance relationships. First, we show that pacifying all enmities in the Demo-
cratic Republic of Congo (henceforth, DRC) would yield a reduction in fighting by between 54%
and 91%. Next, we show that a more realistic policy aiming to pacify individual groups could also
be effective. For instance, rewiring all enmities of the FDLR into neutral relationships would yield
a de-escalation of the conflict by 13%.

Our contribution is related to various strands of the existing literature. First, our paper is
linked to the growing literature on the economics of networks (e.g., Acemoglu and Ozdaglar 2011,
Bramoullé, Kranton, and d’Amours 2014, Jackson 2008, Jackson and Zenou 2014). There exist only
very few papers in the literature studying strategic interactions of multiple agents in networks of
conflict. Franke and Öztürk (2009) study agents being embedded in a network of bilateral conflicts,
where agents can choose their fighting efforts to attack their neighbors. However, they do not allow
for alliances. Moreover, they only characterize equilibrium efforts for particular networks (regular,
star-shaped, and complete bipartite graphs), while we provide an equilibrium characterization for
any network structure. Huremovic (2014) extends their model introducing endogenous fighting
efforts in contests. His model differs from ours in several respects: there are no alliances, and the
conflict is restricted to a collection of pairwise contests (while in our model many agents compete
over a common prize). Neither of these studies tests the model empirically.

Two recent theoretical papers study the endogenous formation of networks in models of conflict.
Hiller (2012) considers a model where agents can form alliances to coerce payoffs from enemies with
fewer friends. Jackson and Nei (2014) study the formation of alliances in multilateral interstate
wars and the implications on trade relationships between them, showing that trade can have a
mitigating effect on conflicts. Neither of these papers consider, as we do, an endogenous choice of
fighting effort. Different from these papers, we do not analyze the determinants of the network,
which we infer from the data and treat as exogenous. Extending the analysis of endogenous network
formation to large-scale networks including both enmities and alliances like the one in the Congo
War is a challenging endeavor that is beyond the scope of this research.4

All of the above papers provide theoretical contributions. Our paper provides an estimation of
the model based on the structural equations of the theory, and uses the estimates of the structural
parameters to perform a key player analysis. In this sense, our paper is related to recent work by
Acemoglu, Garcia-Jimeno and Robinson (2014) who estimate a political economy model of public

4From an empirical standpoint, most group characteristics that determine whether each two groups are friends,
enemies or neutral are unobservable to the econometrician. The challenge is to predict how such shocks would reshuffle
network links. We conjecture that the endogenous reshuffling of alliances and enmities in response to weather shocks
– which is the source of identification in our model – must be rare. Consistent with this conjecture, we see only very
little reshuffling of alliances during the Second Congo War. Thus, we do not view network endogeneity as a major
threat to our econometric strategy.
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goods provision using a network of Colombian municipalities. Their empirical strategy is related to
ours, although they use historical variations in players’ characteristics while we use panel variations
(exogenous shocks in rainfall).

The key player analysis in strategic games with networks is pioneered by Ballester, Calvo-
Armengol and Zenou (2006). The authors determine equilibrium effort choices in a game of strategic
complements between neighboring nodes, and identify key players, i.e. the agents whose removal
reduces equilibrium aggregate effort the most. However, their payoff structure is substantially
different from ours, and does not incorporate an environment in which agents compete for common
resources. More recently, the key player policy has been studied empirically. Liu et al. (2011) test
the key player policy for juvenile crime in the United States, while Lindquist and Zenou (2013)
identify key players for co-offending networks in Sweden.

Further, our study is broadly related to the growing politico-economic conflict literature. Pa-
pers in this literature typically focus on settings with two large groups facing each other, without
considering network relationships. A few papers consider multiple groups comprising each a large
number of players, and study collective action problems. Esteban and Ray (2001) show that the
Olson paradox does not generally hold and that sometimes large groups can be more effective than
small groups. To this purpose they build a model with n different groups composed each of a
varying number of individual players. Their model is different and complementary to ours: they
have no network structure, but focus on a setting comprising n different cliques, where there are
no links between cliques. Related to that, Rohner (2011) constructs a conflict model allowing for
n aggregate ethnic groups comprising a given number of individual players.

Our paper also shares some commonalities with the literature on the role of alliances in settings
with either three players, or with identical players (see the surveys in Bloch 2012, and Konrad
2009 and 2011). Some papers note that alliances may be socially desirable since they reduce rent
dissipation in wars (e.g. Olson and Zeckhauser 1966). Other papers regard the mere existence of
alliances as a ”puzzle” given the free-riding (collective action) problem they generate, and the fact
that victorious coalitions must share resources when victorious (see Esteban and Sakovics 2004,
Konrad and Kovenock 2009, and Nitzan 1991).

Finally, our paper is related to the empirical literature on civil war, and in particular to the
recent literature that studies conflict using very disaggregated micro-data on geo-localised fighting
events, such as for example Dube and Vargas (2013), Cassar, Grosjean, and Whitt (2013), La
Ferrara and Harari (2012), Michalopoulos and Papaioannou (2013), Rohner, Thoenig, and Zilibotti
(2013b). In a recent interesting paper on the conflict in the DRC, Sanchez de la Sierra (2014)
studies how price shocks of particular metals (cobalt, gold) affect the incentives of armed groups
to establish control of resource-producing villages in Eastern Congo.

The paper is organized as follows: Section 2 presents the theoretical model and characterizes the
equilibrium; Section 3 discusses the application to the Second Congo War and presents the main
estimation results. Section 4 performs a number of robustness checks, while Section 5 performs
some policy counterfactual analyses (key player and pacification policies). Section 6 concludes. An
appendix contains some technical material.

2 Theory

2.1 Environment

We consider a population of n ∈ N agents (armed groups) whose interactions are captured by a
network G ∈ Gn, where Gn denotes the class of graphs on n nodes (vertices). Each pair of agents
can be in one of three states: alliance, enmity, or neutrality. We represent the set of bilateral states
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by the matrix A = (aij)1≤i,j≤n where aij ∈ {−1, 0, 1}. More formally, A is the signed adjacency
matrix associated with the network G, where, for all i 6= j,

aij =





1, if i and j are allies,

−1, if i and j are enemies,

0, if i and j are in a neutral relationship.

Note that a neutral relationship is modeled as the absence of links.
Let a+ij ≡ max {aij , 0} and a−ij ≡ −min {aij , 0} denote the positive and negative parts of aij ,

respectively. Then, aij = a+ij − a−ij , respectively, for all 1 ≤ i, j ≤ n. Similarly, A = A+ − A−

where A+ = (a+ij)1≤i,j≤n and A− = (a−ij)1≤i,j≤n. We denote the corresponding subgraphs as G+

and G−, respectively, so that G can be written as the graph join G = G+ ⊕G−. Finally, we define
by d+i ≡

∑n
j=1 a

+
ij and d−i ≡

∑n
j=1 a

−
ij, respectively, the number of allies and enemies of agent i.

The n agents compete for a prize whose total value is denoted by V > 0. We assume agents’
payoffs to be determined by a generalized Tullock contest success function (CSF) (cf. Tullock 1980,
and Skaperdas 1996). The CSF maps the relative fighting intensity each agent devotes to a conflict
into the share of the prize he appropriates after the conflict. More formally, we postulate a payoff
function πi : G

n × R
n → R given by

πi (G,x) = ζ i + V
ϕi (G,x)∑n
j=1 ϕj (G,x)

− xi (1)

where ζ i ≥ 0 is an exogenous endowment, x ∈ S is a vector describing the fighting effort of each
agent, and ϕi ∈ R is agent i’s operational performance (OP). The latter is assumed to depend on
agent i’s own fighting effort, as well as on his allies’ and enemies’ efforts. More formally, we assume
that

ϕi(G,x) ≡ xi + β
n∑

j=1

a+ijxj − γ
n∑

j=1

a−ijxj , (2)

where β, γ ∈ [0, 1] are spillover parameters from allies’ and enemies’ fighting efforts, respectively.
Note that the specification of equation (2) implies no heterogeneity across agents other than their
position (i.e., the number of allies and enemies) in the network. We introduce other sources of
heterogeneity (e.g., military power) in Section 2.6 below.

Equation (2) postulates that each agent’s OP increases in the total effort exerted by its allies and
decreases in the total effort exerted by its enemies. These externalities compound with those already
embedded in standard CSFs, which equation (2) nests as a particular case when a+ij = a−ij = 0 for all

i and j. In this case, πi(G,x) =
(
xi/
∑n

j=1 xj

)
V − xi, and each agent’s effort imposes a negative

externality on the other agents in the contest only by increasing the denominator of the CSF.
Consider, for example, a network such that a+kk′ = 1 and β > 0, for one and only one pair

of agents (k, k′) (while a−ij = 0 for all i, j = 1, . . . , n). Then, πk(G,x) = V (xk + βxk′) /(
∑n

i=1 xi
+ β(xk + xk′)) − xk. In this case, an increase in the effort of k′ affects the payoff of k via two
channels: (i) the standard negative externality working through the denominator; (ii) the positive
externality working through the numerator. Thus, holding efforts constant, an alliance between
two agents increases the share of V jointly accruing to them, at the expenses of the remaining
groups. To the opposite, enmity links strengthen the negative externality of the standard CSF.

Note that the OP could in principle be negative (for instance, when an agent has many enemies
exerting high effort). We interpret a negative OP as a situation in which a group is expropriated
of part of its endowment (ζ i) – since utility is linear in income, this entails no loss of generality.
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In the Nash equilibrium characterized in Section 2.2 below, however, all groups’ OP is positive.5

Note further that there is no ”participation decision”, namely, belligerent groups cannot decide to
abstain from the conflict and live from their endowment. This has a natural interpretation: groups
cannot flee from the country, and not making any fighting effort would expose them to other armed
groups’ looting and ransacking activity. For technical reasons, we impose a lower bound to the
choice set, i.e., x ∈ S = [x1,∞)× [x2,∞)× ...[xn,∞).

2.2 Equilibrium Fighting Effort

In this section, we characterize the Nash equilibrium of the contest. More formally, each agent
chooses effort (xi) non-cooperatively so as to maximize πi (G, [xi,x−i]), given x−i. The equilibrium
is a fixed point of the effort vector.

Using equations (1)-(2) yields the following system of first order conditions (FOC), for i =
1, 2, . . . , n:

∂πi (G,x)

∂xi
= 0 ⇐⇒ ϕi =

1

1 + βd+i − γd−i


1−

1

V

n∑

j=1

ϕj




n∑

j=1

ϕj.

We assume that, for all i:
βd+i − γd−i > −1. (3)

This condition is both necessary and sufficient for the second order condition to hold for all players
at the equilibrium (see Proposition 1 and its proof in Appendix A). In the empirical analysis, we
check that this condition holds for our estimates of β and γ.

Rearranging terms allows us to obtain a simple expression for the equilibrium OP level,

ϕ∗
i (G) = Λβ,γ (G)

(
1− Λβ,γ (G)

)
Γβ,γ
i (G) × V, (4)

and for the share of the prize accruing to i in equilibrium,

ϕ∗
i (G)∑n

j=1 ϕ
∗
j (G)

=
Γβ,γ
i (G)

∑n
j=1 Γ

β,γ
j (G)

, (5)

where

Γβ,γ
i (G) ≡

1

1 + βd+i − γd−i
, and Λβ,γ (G) ≡ 1−

1
∑n

i=1 Γ
β,γ
i (G)

. (6)

Γβ,γ
i (G) is a measure of the local hostility level capturing the externalities associated with agent

i’s first-degree alliance and enmity links. Both Γβ,γ
i (G) and Λβ,γ(G) are decreasing with β, and

increasing with γ (see Lemma 3 in Online Appendix B). Note also that equation (1) implies that
the share of the prize accruing to agent i increases in the number of her allies and decreases in the
number of her enemies.

Next, we characterize the equilibrium fighting effort, and show how it depends on the structure
of the network.

5Nor do we impose any non-negativity constraint on xi, given the linearity of the pay-off function. The zero effort
level is a matter of normalization. One could rewrite the model by replacing the effort level xi with (x̄ + xi). All
results would be unchanged.
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Proposition 1. Assume that β + γ < 1/max{λmax(G
+), d−max}, where λmax (A

±) denotes the
largest eigenvalue associated with the matrix A±. Assume, in addition, that condition (3) holds

true. Let Γβ,γ
i (G) and Λβ,γ (G) be defined as in equation (6), and let

cβ,γ (G) ≡
(
In + βA+ − γA−

)−1
Γβ,γ (G) (7)

be a centrality vector, whose generic element cβ,γi (G) describes the centrality of agent i in the
network G. Then, under an appropriate restriction of the strategy space, S = [x1,∞) × [x2,∞) ×
...× [xn,∞) ⊂ R

n, where xi > −∞ ∀i = 1, 2, . . . , n, there exists a unique interior Nash equilibrium
of the n–player simultaneous move game with payoffs given by equation (1), agents’ OPs in equation
(2), where the equilibrium effort levels are characterized by

x∗i (G) = V Λβ,γ (G)
(
1− Λβ,γ (G)

)
cβ,γi (G) (8)

for all i = 1, . . . , n, where x∗i (G) > xi. Moreover, the equilibrium OP levels are given by equation
(4), and the equilibrium payoffs are given by

π∗i (G) = πi (x
∗, G) = V (1− Λβ,γ(G))

(
Γβ,γ
i (G)− Λβ,γ (G) cβ,γi (G)

)
. (9)

The inequality β + γ < 1/max{λmax(G
+), d−max} is a sufficient condition for the matrix in (7)

to be invertible. Equation (9) follows from the set of FOCs. Condition (3) ensures that, for all
i = 1, . . . , n, agent i’s payoff, conditional on x∗

−i, is locally concave, implying that the FOCs pin
down a local maximum for all players.6 Formally, this guarantees that the strategy profile satisfying
(9) is a local Nash equilibrium (Alos-Ferrer and Ania 2001).7 To ensure that this strategy profile is,
in addition, a Nash equilibrium in the standard sense, we must impose a lower bound on the state
space to ensure in turn that, conditional on x∗

−i, x
∗
i (G) is a best reply over the entire admissible

region, [xi,∞).8

The centrality measure, cβ,γi (G) , plays a key role in Proposition 1. Note, in particular, that
the relative fighting efforts of any two agents equals the ratio between the respective centrality in
the network:

x∗i (G)

x∗j (G)
=
cβ,γi (G)

cβ,γj (G)
.

2.3 The Case of Small Externalities

While cβ,γi (G) depends, in general, on the entire network structure, it is instructive to consider
networks in which the spillover parameters β and γ are small. In this case, our centrality measure
can be approximated by the the sum of (i) the Bonacich centrality related to the network of enmities,
G−, (ii) the (negative-parameter) Bonacich centrality related to the network of alliances, G+, and
(iii) the local hostility vector, Γβ,γ(G).9

6In the rest of this section, we assume that the two conditions under which the Proposition is proven are satisfied.
In the empirical analysis, we will check that the estimates of β and γ and the adjacency matrix ensure that the FOCs
characterize an interior Nash equilibrium.

7A local Nash equilibrium is a strategy profile such that no player has an incentive to operate a “small” deviation.
A formal definition is provided in Definition 2 in Appendix A. The lower bound on the state space ensures that, at
the equilibrium, no player has an incentive to operate any feasible deviation.

8In Remark 1 in Appendix A we show that it is possible to compute a common lower bound in Proposition 1,
x, on the effort levels xi, such that πi(x

∗
−i, xi, G) − πi(x

∗, G) < 0 holds for all i = 1, . . . , n if x ∈ [x,∞)n and that
x < x∗

i for all i = 1, . . . , n.
9See the Online Appendix D for a more detailed discussion of the Bonacich centrality. A discussion of the Bonacich

centrality with a negative parameter can be found in Bonacich (2007) .
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Lemma 1. Assume that the conditions of Proposition 1 are satisfied. Then, as β → 0 and γ → 0,
the centrality measure defined in equation (7) can be written as

cβ,γ(G) = b·(γ,G
−) + b·(−β,G

+)− Γβ,γ(G) +O (βγ) ,

where O (βγ) involves second and higher order terms, and the (µ-weighted) Bonacich centrality with
parameter α is defined as b·(α,G) ≡ bΓβ,γ(G)(α,G) = (In − αA)−1

Γβ,γ(G) =
∑∞

k=0 α
kAkΓβ,γ(G).

Lemma 1 states that the centrality cβ,γ(G) can be expressed as a linear combination of the
weighted Bonacich centralities b·(γ,G

−), b·(−β,G
+) and the vector Γβ,γ(G). Each Bonacich

centrality gauges the network multiplier effect attached to the system of enmities and alliances,
respectively. In particular, b·(γ,G

−) captures how a group i is influenced by all its (direct and
indirect) enemies.10 In the case of of weak network externalities (i.e. when β → 0 and γ → 0), the
Bonacich centrality can be itself approximated as follows:

b·,i
(
γ,G−

)
= Γβ,γ

i (G) + γ
n∑

j=1

a−ijΓ
β,γ
j (G) + γ2

n∑

j=1

a−ij

n∑

k=1

a−jkΓ
β,γ
k (G) +O

(
γ3
)
,

b·,i(−β,G
+) = Γβ,γ

i (G) + (−β)
n∑

j=1

a+ijΓ
β,γ
j (G) + (−β)2

n∑

j=1

a+ij

n∑

k=1

a+jkΓ
β,γ
k (G) +O

(
β3
)
.

Thus, Lemma 1 suggests that, when higher order terms can be neglected, our centrality measure is
increasing in γ and in the number of first order and second order enmities, whereas it is decreasing
in β and in the number of first order alliances. Second order alliances have instead a positive effect
on the centrality measure.11

Moreover, we can also obtain a simple approximate expression for the equilibrium efforts and
the payoffs in Proposition 1.12

Lemma 2. As β → 0 and γ → 0, the equilibrium effort and payoff of agent i in network G can be
written as

x∗i (G) = V
(
Aβ,γ(G) −B

(
βd+i − γd−i

))
+O (βγ) ,

π∗i (G) = V
(
Cβ,γ(G) +D

(
βd+i − γd−i

))
+O (βγ) ,

where Aβ,γ(G), B,Cβ,γ(G) and D are positive constants with Aβ,γ(G) and Cβ,γ(G) being of the
order of O(β) +O(γ).

10The Bonacich centrality measure related to the network of hostilities, b·,i
(

γ, G−
)

, measures as the local hostility
levels along all walks reaching i using only hostility connections, where walks of length k are weighted by the
geometrically decaying hostility externality γk (see also the Online Appendix D). Due to the approximation, we only
consider links up to order two.

11The intuition for this property is as follows. If i is allied with j and j is allied with k, an increase in the fighting
effort of k reduces the fighting effort of j and this, in turn, increases the fighting effort of i. Consider, instead, the
case in which i is an enemy of j and j is an enemy of k. Then, an increase in the fighting effort of k increases the
fighting effort of j and this, in turn, increases the fighting effort of i.

12See the proof of Lemma 2 in Appendix A for the explicit expressions for the constants Aβ,γ(G), B,Cβ,γ(G) and
D.

It is useful to note that, when β = γ = 0, then Λβ,γ(G) = 1− 1
n
, and cβ,γi (G) = 1. Then, the equilibrium expressions

in Proposition 1 simplify to x∗
i (G) = V (n− 1)/n2 and π∗

i (G) = V/n2 which are the standard solutions in the Tullock
CSF.
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Lemma 2 shows that, when network externalities are small, an agent’s fighting effort increases
in the weighted difference between the number of enmities (weighted by γ) and alliances (weighted
by β), i.e. the net local externalities d+i β − d−i γ. The opposite is true for the equilibrium payoff,
which is increasing in d+i β − d−i γ. Thus, ceteris paribus, an increase in the spillover from alliances
(enmities), parameterized by β (γ), and an increase in the number of allies (enemies) decreases
(increases) agent i’s fighting effort and increases (reduces) its payoff. Intuitively, an agent with
many enemies tends to fight harder and to appropriate a smaller share of the prize, whereas an
agent with many friends tends to fight less and to appropriate a large size of the prize.

One must remember, however, that this simple result may fail to hold true if β and γ are not
small and higher-degree links have sizeable effects. In the empirical analysis below, we find that
higher order terms cannot be ignored to draw both positive and normative implications.

2.4 Rent Dissipation and Key Player

In this section, we discuss normative implications of the theory. Our welfare measure is (minus)
the total rent dissipation. Since V is exogenous, the rent dissipation equals the total equilibrium
fighting effort:

RDβ,γ(G) ≡
1

V

n∑

i=1

x∗i (G) = Λβ,γ(G)(1 − Λβ,γ(G))

n∑

i=1

cβ,γi (G).

Since
∑n

i=1 π
∗
i (G) = V

(
1− RDβ,γ(G)

)
, minimizing rent dissipation is equivalent to maximizing

welfare.
Next, we define the key player to be the agent whose removal triggers the largest reduction in

rent dissipation (cf. Ballester, Calvo-Armengol and Zenou 2006).

Definition 1. Let G\{i} be the network obtained from G by removing agent i, and assume that
the conditions of Proposition 1 hold. Then the key player i∗ ∈ N ≡ {1, . . . , n} ∪ ∅ is defined by

i∗ = argmax
i∈N

{
RDβ,γ (G)− RDβ,γ (G\{i})

}
. (10)

Note that the welfare difference RDβ,γ (G)−RDβ,γ (G\{i}) can be interpreted as the maximum
cost that a benevolent policy maker is willing to pay to induce (or force) agent i not to participate
in the contest. In Proposition 2 in the Online Appendix B, we show that the identity of the key
player is related to the centrality measure defined in equation (7).13

2.5 Examples

In this section, we discuss two types of examples that illustrate general properties of the model.
We consider, first, a regular graph where all agents have a symmetric position in the network. This
graph is useful for showing how the number of alliances and enmities affects rent dissipation. Then,
we consider a path graph with a core-periphery structure that highlights the importance of the
centrality of agents in the network.

13The key player identified in equation (43) in Proposition 2 in the Online Appendix B differs significantly from
the one introduced in Ballester, Calvo-Armengol and Zenou (2006). Our key player formula is more involved due to
the non-linearity inherent in the contest success function in the agents’ payoffs.
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Figure 1: The figure shows three examples of regular graphs Gk+,k− : The left panel shows a regular
graph with k+ = k− = 1 (cycle), the middle panel shows a regular graph with k+ = k− = 2 (a
lattice with periodic boundary conditions, i.e. a torus), and the right panel a Cayley graph with
k+ = 1 and k− = 2. Alliances are indicated with thick lines while enmities are indicated with thin
lines.

2.5.1 Regular Graph

A regular network, Gk+,k−, has the property that every agent i has d+i = k+ alliances and d−i = k−

enmities. Regular graphs are tractable and enable us to perform comparative statics on the number
of alliances or enmities in the network. Three examples of regular graphs are displayed in Figure
1.

Given the symmetric structure, there exists a symmetric Nash equilibrium such that all agents
exercise the same effort. Moreover, ϕ∗

i = ϕ∗ = 1/n for all i = 1, . . . , n, implying an equal division of
the pie. Under the conditions of Proposition 1, the equilibrium effort and payoff vectors are given,
respectively, by:

x∗
(
k+, k−

)
≡ x∗i

(
Gk+,k−

)
=

(
1

1 + βk+ − γk−
−

1

n

)
×
V

n
, (11)

π∗
(
k+, k−

)
≡ π∗i

(
Gk+,k−

)
=

1 + (1 + n)(βk+ − γk−)

n(1 + βk+ − γk−)
×
V

n
. (12)

Standard differentiation implies that x∗ is decreasing in k+ and increasing in k−, whereas π∗ is
increasing in k+ and decreasing in k−. Intuitively, alliances (enmities) reduce (increase) effort and
rent dissipation by decreasing (increasing) the marginal return of individual fighting effort. This
basic intuition gets confounded in general networks due to the asymmetries in higher-order links.
However, the result is unambiguous in regular graphs.

The regular graph nests three interesting particular cases. First, if β = γ = 0, we have a
standard Tullock game, with RD0,0

(
Gk+,k−

)
= (n− 1) /n. Second, consider a complete network

of alliances (k+ = n − 1), where, in addition, β → 1. Then, x∗ → 0 and RD1,γ (Gn−1,0) → 0,
i.e., there is no rent dissipation. Namely, the society attains peacefully the equal split of the
surplus, as in Rousseau’s harmonious society. The lack of conflict does not stem here from social
preferences or cooperation, but from the equilibrium outcome of a non-cooperative game between
selfish individuals. The crux is the strong fighting externality across allied agents, which takes the
marginal product of individual fighting effort down to zero. Third, consider, conversely, a society in
which all relationships are hostile, i.e., k− = n− 1. Then, RDβ,γ (G0,n−1) → 1 as γ → 1/ (n− 1)2:
all rents are dissipated through fierce fighting and total destruction, as in Hobbes’ homo homini
lupus pre-contractual society.
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Figure 2: The figure shows a path graph, P5, with five agents.
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Figure 3: The figure shows the equilibrium efforts (left panels) and payoffs (right panels) as functions
of γ and β for two path graphs in which there are only enmity links (upper panels) and only alliance
links (lower panels), respectively, for V = 1.

2.5.2 Path Graph

Next, we consider a path (core-periphery) graph, P5, with five agents, see Figure 2. No link means
a neutral relationship. Suppose, first, that all links in Figure 2 are enmities. The upper left and
upper right panel of Figure 3 show, respectively, effort levels and payoff for different values of γ.
The ranking of the effort level yields x∗1(P5) > x∗2(P5) = x∗4(P5) > x∗3(P5) = x∗5(P5).

14 Intuitively,
effort is proportional to the centrality in the network. The ranking of pay-offs is opposite: welfare
increases as one moves from the center to the periphery. Fighting effort and payoffs are increasing
and decreasing in γ, respectively.

Consider, next, the polar opposite case in which all links in Figure 2 are alliances. The bottom
left and right panels of Figure 3 show, respectively, effort levels and payoffs for different values of β.

14More formally, we have: x∗
1(P5) = V

2(γ(γ+2)−2)(γ(3γ2+γ−1)−1)
(5−7γ)2(3γ2−1)

, x2(P5)
∗ = x∗

4(P5) = V
2((γ(3γ+5)−9)γ2+2)

(5−7γ)2(1−3γ2)
and

x∗
3(P5) = x∗

5(P5) = V 2(γ(γ+2)−2)((γ−1)γ(3γ+1)+1)

(5−7γ)2(3γ2−1)
.
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Figure 4: The figure shows three different graphs, P4, P2 ∪ P2 and P3 ∪ P1, obtained from a path
graph, P5, due to the removal of an agent.

The ranking of effort yields now, x∗2(P5) = x∗4(P5) < x∗1(P5) < x∗3(P5) = x∗5(P5).
15 For a low range

of β’s, the peripheral agents, 3 and 5, exert the highest effort and earn the lowest payoff. However,
for higher β’s, agents 3 and 5 earn a higher payoff than agent 1. Note that agents 2 and 4 exert
the lowest effort, in spite of agent 1 being the most central player. The reason is that agents 2 and
4 are connected, respectively, to agents 3 and 5 who lie at the periphery of the network, and who
have no other connections. Thus, agents 2 and 4 can free ride on the high effort exerted by 3 and
5.16 Finally, the efforts and payoffs of agents 1, 3 and 5 are non-monotonic, due to the fact that,
when β is high, there is more free riding. Agents 2 and 4 exert very low fighting effort, and induce
substitution effects (i.e., higher effort) from their respective neighbors.

The results are consistent with Lemma 2. In the upper panel, as γ → 0 the effort is lowest and
payoff is highest for the agent who has the smallest number of enemies (i.e., agent 1). In the lower
panel, as β → 0 the effort is highest for the agents who have only one ally (i.e., agents 3 and 5).

Finally, we perform a key player analysis. Figure 4 shows the three different graphs, P4, P2∪P2

and P3∪P1, obtained from removing one agent from P5. When all links are enmities, the maximum
reduction in rent dissipation is attained by removing the central agent, 1. The reason is that, in
this case, a graph with more walks (hence, stronger network feedback effects) amplifies fighting.
Removing the central agent in P5 (as displayed in P2∪P2) yields the largest reduction in the number
of walks, resulting in the lowest total fighting. In contrast, when all links are alliances, fighting
is decreasing in the number of walks. In this case, the maximum reduction in rent dissipation is
attained by removing a peripheral agent (either 3 or 5).

2.6 Heterogeneous Fighting Technologies

So far, we have maintained that all agents have access to the same technology turning fighting effort
into OP. This was useful for keeping the focus sharply on the network structure. In reality, armed
groups typically differ in size, wealth, access to weapons, etc. In this section, we generalize our
model by allowing fighting technologies to differ across players. We restrict attention to additive
heterogeneity, since this is crucial for achieving identification in the econometric model presented

15The analytical expressions are x∗
1(P5) = V

2(β2(β+1)(β(3β−10)+5)−2)
(7β+5)2(3β2−1)

, x∗
2(P5) = V

2(β2(β(5−3β)+9)−2)
(7β+5)2(3β2−1)

and x∗
3(P5) =

V 2((β−2)β−2)(β(β+1)(3β−1)−1)

(7β+5)2(1−3β2)
.

16This is related to the interpretation of the Bonacich centrality with a negative parameter. In this case a node
is more powerful to the degree that its connections themselves have few alternative connections (see Sec. 1.1.1 in
Bonacich, 2007).

12



below.17

Suppose that agent i’s OP is given by:

ϕi(G,x) = ϕ̃i + xi + β
n∑

j=1

a+ijxj − γ
n∑

j=1

a−ijxj, (13)

where ϕ̃i is a group-specific shifter affecting OP (e.g., its military capability).18

In the appendix, we show that the equilibrium OP is unchanged, and continues to be given
by equation (4). Likewise, equation (5) continues to characterize the share of the prize appro-
priated by each agent. Somewhat surprising, the share of resources appropriated by group i,
ϕ∗
i (G)/

∑n
j=1ϕ

∗
j(G), is independent of ϕ̃i. However, ϕ̃i affects the equilibrium effort exerted by

group i and its payoff. In particular, the vector of the equilibrium fighting efforts is now given by

x∗ = (In + βA+ − γA−)−1(V Λβ,γ(G)(1 − Λβ,γ(G))Γβ,γ(G) − ϕ̃), (14)

where the definitions of Λβ,γ(G) and Γβ,γ(G) are unchanged (see Proposition 3 in the Online
Appendix B).

Equation (13) will be the basis of our econometric analysis where we introduce both observable
and unobservable sources of heterogeneity. In particular, time-varying shocks to ϕ̃ will be key for
the econometric identification.

3 Empirical Application - The Second Congo War

In this section, we apply the theory to the recent civil conflict in the Democratic Republic of
Congo (henceforth, DRC). Our goal is to estimate the externality parameters β and γ from the
structural equation (13) characterizing the Nash equilibrium of the model. Equipped with point
estimates of the structural parameters we test key restrictions imposed by the theory and perform
counterfactual pacification policies. We start by presenting the historical context of the DRC
conflict. Then, we discuss the data sources and how the network structure is observed from the
data. Finally, we proceed to the econometric model and to the discussion of our identification and
estimation procedure.

3.1 Historical Context

We study the Second Congo War, sometimes referred to as the ”Great African War”. Detailed
accounts of this conflict can be found in Prunier (2011) and Stearns (2011). The DRC is the largest
Sub-Saharan African country in terms of area, and is populated by about 75 million inhabitants.
It is a classic example of a failed state. After gaining independence from Belgium in 1960, it expe-
rienced recurrent political and military turbulence that turned it into one of the poorest countries
in the world, despite its abundance of natural resources (including diamonds, copper, gold and
cobalt). The DRC is also a very ethnically fragmented country with over 200 ethnic groups. The

17It is possible to solve for richer forms of heterogenity, such as a multiplicative one. However, we do not focus on
such alternative cases, since it becomes impossible to identify econometrically the parameters of the model.

18An alternative interpretation is to consider our model as the linear approximation of a logit-form CSF (cf.

Skaperdas, 1996). Consider the payoff function πi : Gn × R
n → R with πi(G,x) ≡ V eλϕi(G,x)

∑

n
j=1 e

λϕj(G,x) − xi, for all

i = 1, . . . , n, where ϕi(G,x) is the OP of agent i given by equation (2). In the limit λ → 0 we obtain the ratio form

πi(G,x) = V
1+λϕi(G,x)+O(λ2)

n+λ
∑

n
j=1 ϕj(G,x)+O(λ2)

− xi = V
λ−1+ϕi(G,x)+O(λ)

nλ−1+
∑

n
j=1 ϕj(G,x)+O(λ)

− xi. Hence, we can introduce the shifted OP

from equation (13) with ϕ̃i = λ−1 for all i = 1, . . . , n.
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Congo conflict is emblematic of the role of natural resource rents and of the involvement of many
inter-connected domestic and foreign actors. In particular, the conflict involved three Congolese
rebel movements, 14 foreign armed groups, and several militias (Autesserre 2008). In such complex
and fragmented warfare, alliances and enmities play a major role.

The Congo Wars are intertwined with the ethnic conflicts in neighboring Rwanda and Uganda.
The culminating event is the Rwandan genocide of 1994, where the Hutu-dominated government
of Rwanda supported by ethnic militias such as the Interahamwe, persecuted and killed nearly a
million of Tutsis and moderate Hutus in less than one hundred days. After losing power to the Tutsi
rebels of the Rwandan Patriotic Front (RPF), over a million Hutus fled Rwanda and found refuge
in the DRC, governed at that time by the dictator Mobutu Sese Seko. The refugee camps hosted,
along with civilians, former militiamen responsible of the Rwandan genocide. These continued to
clash with the Tutsi population living both in Rwanda and in the DRC, most notably in the Kivu
region (Seybolt 2000).

As ethnic tensions escalated, a broad coalition centered around Uganda and Rwanda, but also
comprising several other African states, supported the anti-Mobutu rebellion led by Laurent-Désiré
Kabila’s Alliance of Democratic Forces for the Liberation of Congo (ADFL). The First Congo
War (1996-97) ended with Kabila’s victory. However, the relationship of the new president of the
DRC with his former Tutsi allies and his main foreign sponsors, Rwanda and Uganda, deteriorated
rapidly. The Second Congo War erupted in 1998 where Kabila received the support of some former
foreign allies (Angola, Chad, Namibia, Sudan and Zimbabwe) and of the Hutu militias that had
previously supported Mobutu.19 His main enemies were Uganda, Rwanda and a network of rebel
groups. Many rebel groups were linked to foreign powers: Uganda sponsored the Rally for Congolese
Democracy - Kisangani (RCD-K), while the Congolese Liberation Movement (MLC), the Rally for
Congolese Democracy - Goma (RCD-G) received support from Rwanda (Seybolt 2000). The heart
of the war was the Eastern border and the conflict spread fast to the whole country, with many
actors taking part in the conflict out of hostility to other specific actors. These include, among
others, the anti-Ugandan rebel forces of the Allied Democratic Forces and the Lord’s Resistance
Army, or the anti-Angolan UNITA forces.

The Second Congo War ended officially in 2003, although fighting is still going on today. It
is the deadliest conflict since World War II, with between 3 and 5 million lives lost (Olsson and
Fors, 2004; Autesserre, 2008). In spite of the numerous shifts that occurred in 1997, the web of
alliances and enmities remained remarkably stable thereafter. As documented by Prunier (2011:
187ff), most alliances and enmities were determined by international and domestic factors of the
countries involved, and remained constant over the entire conflict (at least until 2010, the extent
of time covered by our data). Many groups chose their loyalties following Realpolitik and trying to
balance rising neighbors like South Africa or Sudan.

While many groups involved in the Second Congo War took stands vis-a-vis the DRC gov-
ernment, there were flagrant violations of transitivity, and the conflict cannot be described as a
coherent two-camp (pro- versus anti-DRC government) war. In Prunier’s words, ”the continent
was fractured, not only for or against Kabila, but within each of the two camps” (2011: 187).
Recurrent clashes erupted among the main factions - like in the case of the infamous violent clashes
between RCD-G and RCD-K (Prunier 2011: 240ff; Turner 2007: 200). Even the historical alliance
between Uganda and Rwanda, which was forged on ethnic and geopolitical grounds cracked a few
times, resulting in important clashes between the two armies or between groups sponsored by ei-
ther of them (Turner, 2007: 200). Similarly, there was in-fighting among different pro-government
paramilitary groups, such as the Mayi-Mayi militias, (cf. Prunier 2011: 281). The DRC army

19In 2001, Laurent-Désiré Kabila was assassinated, and was later replaced by his son Joseph Kabila.
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itself was notoriously prone to internal clashes and mutinies, spurred by the fact that its units are
segregated along ethnic lines and often correspond to former ethnic militias or paramilitaries that
got integrated into the national army (cf. Prunier 2011: 305ff).20 In summary, far from being a
war between two unitary alliances, the conflict engaged a complex web of alliances and enmities,
with many non-transitive links.

Two other aspects of the conflict are noteworthy. First, with the exception of the DRC armed
forces, most actors were active in limited parts of the country. Ethnic militias (i.e., the vast
majority of local armed groups) typically fought in territories adjacent to those where their affiliated
population lived. Second, weather conditions were important in determining the intensity of the
conflict in different regions. Figure 5 displays the fighting intensity and average climate conditions
for different ethnic homelands in the DRC.21 Weather conditions vary considerably both across
regions of the DRC and over time.

3.2 Data

We build a panel dataset for the period 1998-2010 that includes both the official years of the
Second Congo War (until 2003) and its turbulent aftermath. The unit of observation is at the
fighting group×year level (annual frequency). The variables used in the estimations are built from
a variety of data sources. We describe these and the construction of the variables in this section.
The related summary statistics are displayed in Table 1.

Fighting – Our main data source is the Armed Conflict Location and Events Dataset (ACLED
2012).22 This dataset contains 4765 geo-localised violent events taking place in the DRC involving
85 fighting groups. For each such event, ACLED provides information on the exact location, the
date and the identities of the involved groups – including information about which groups fight on
the same side and which fight on opposite sides.23 In the recent literature ACLED has been used so
far with the purpose of building geolocalized measurement of violence. Here, besides geolocalization,
we also exploit bilateral information about which groups fight together or against each other to
document the fine-grained structure of the network of alliances and enmities. To the best of our
knowledge, our study is the first to exploit this information.

Our main dependent variable is group i’s yearly Fighting Effort. We measure xit as the sum
over all ACLED fighting events involving group i in year t. In the robustness section, we construct

20Turner (2007) describes a typical clash between army fractions in 2004: ”In the aftermath of the peace agreements
of Sun City and Pretoria, Congo was supposed to create a unified national army and civil-territorial administration.
Some Rwandophone officers of North and South Kivu led the resistance to brassage (intermingling) of officers and
troops from various composants. The two most prominent of these were Colonel Jules Mutebutsi (a Munyamulenge
from South Kivu) and General Laurent Nkunda (Rwandophone Tutsi allegedly from Rutshuru in Kivu). These
officers led a mutiny against their superiors, and briefly took over the city of Bukavu (capital of South Kivu) (2007:
96).”

21The data used for generating this figure are discussed in detail below.
22This a well established data source in the literature. Recent papers using ACLED include, among others, Berman

et al. (2014), Cassar, Grosjean, and Whitt (2013), Michalopoulos and Papaioannou (2013), and Rohner, Thoenig,
and Zilibotti (2013b).

23Here are three examples: On the 18th of May 1999 a battle took place between ”RCD: Rally for Congolese
Democracy (Goma)” and ”Military Forces of Rwanda”, on one side, and the ”Military Forces of DRC” on the other
side. On the 13th of January 2000 there was a battle between ”Lendu Ethnic Militia” and ”Military Forces of DRC”,
on the one side, and ”Hema Ethnic Militia” and ”RCD: Rally for Congolese Democracy”, on the other side. On
the 3rd of February 2000, the ”MLC: Congolese Liberation Movement” together with ”Military Forces of Uganda”
confronted the allied forces of the ”Military Forces of DRC” and ”Interahamwe Hutu Ethnic Militia”.
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Figure 5: Average rainfall and number of violent events (ACLED) in the DRC.
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Table 1: Summary statistics.

Variable Obs. Mean Std. Dev. Min. Max.

Total Fighting 1190 5.23 22.72 0 300
Total Fighting of Enemies 1190 50.48 92.89 0 645
Total Fighting of Allies 1190 38.80 74.77 0 493
d− (Number Enemies) 1190 2.61 3.59 0 20
d+ (Number Allies) 1190 2.24 3.41 0 18
Foreign 1190 0.31 0.46 0 1
Government Organization 1190 0.20 0.40 0 1
Rain fall (t− 1) 1190 125.35 26.36 58.02 197.35

alternative measures of fighting effort by restricting the count to the more conspicuous events such
as those classified by ACLED as battles or those involving fatalities.

Rainfall – For the purpose of our instrumentation strategy we build the yearly average of
rainfall in the homeland of each fighting group. We use gauge-based rainfall measure from the
Global Precipitation Climatology Centre (GPCC) (Schneider et al. 2011), at a spatial resolution of
0.5◦×0.5◦ grid-cells. This dataset is widely used and is renowned for its precision and fine resolution.
The homeland of a fighting group corresponds to the spatial zone of its fighting operations (i.e.
convex hull containing all geolocalized ACLED events involving that group at any time during the
period 1998-2010). Then, for each year t, we compute the average rainfall in the grid-cell of the
homeland centroid. Alternative constructions are considered in our robustness analysis.24

One potential concern is that rain-gauges located at the ground level may be damaged by local
fighting activities. Therefore, in the robustness section, we also use satellite-based rainfall measures.
These are generally less precise, but it is safe to assume that the measurement error is uncorrelated
with ground-level fighting. We use two alternative annual dataset. The first comes from the Global
Precipitation Climatology Project (GPCP) from NOAA and has a spatial resolution of 2.5◦×2.5◦.
The second is the Tropical Rainfall Measuring Mission (TRMM) from NASA at a resolution of
0.5◦×0.5◦. These dataset use atmospheric parameters (e.g. cloud coverage, light intensity) as
indirect and noisy measures of rainfall. Hence both of these satellite-based measures are much less
precise than the rain-gauge measure.

Covariates – The following variables are used to generate the set of control variables. Gov-
ernment Organization is a binary variable equal to 1 for fighting groups that are officially affiliated
to a domestic or foreign government. This amounts to 17 groups out of 85, corresponding to the
military and police forces of Angola, Burundi, Chad, DRC, Namibia, Rwanda, South Africa, Sudan,
Uganda, Zambia and Zimbabwe. The dummy Foreign is equal to 1 for all foreign actors, and 0 for
all fighting groups that originate from the DRC. In total 26 groups are coded as Foreign. Finally
for all groups we compute the yearly amount of fighting events in which they are involved outside
the DRC. The resulting variable, Fighting Effort Outside DRC, is used as proxy for the global scope
of operation of a group.

24One option consists in averaging rainfall across all grid-cells of the homeland (not only at the centroid). As for
alternative construction of the homeland we consider an ellipsoid based on a subset of ACLED events (i.e. within
one standard-deviation) or an homeland based on the ethnic affiliations of the fighting group. The main results are
reported in the robustness section.
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3.3 The Fighting Network

We estimate the network of alliances and enmities using two data sources. First, we use the
Yearbook of the Stockholm International Peace Research Institute (SIPRI, see Seybolt, 2000).
Second, we use the dyadic information provided by ACLED. Details are provided below.

As our primary criterion, we follow the classification provided by SIPRI, which lists alliances
between the major actors, including both actors operating in the same region and groups fighting
in different parts of the country but supporting each other logistically. The limitation of the
SIPRI data is that they do not cover small armed groups and militias nor do they contain detailed
information about bilateral enmity links.

For this reason, we also use the dyadic information provided by ACLED. In particular, we code
two groups (i, j) as allies (i.e. a+ij = a+ji = 1) if they have been observed fighting on the same
side in at least one occasion during the sample period, and if, in addition, they have never been
observed fighting on opposite sides. Conversely, we code two groups as enemies (i.e. a−ij = a−ji = 1)
if they have been observed fighting on opposite sides on at least two occasions, and they have never
been observed fighting on the same side.25 We code all other dyads as neutral (i.e. a+ij = a−ij = 0).

Slightly less than 3% of the dyads are coded as allies, and slightly more than 3% are coded as
enemies. The remaining dyads are classified as neutral, either because they were never involved
jointly in any fighting event (93% of the dyads), or because of ambiguities, namely, the two groups
were recorded fighting sometimes on the same side, and sometimes on opposite sides. The propor-
tion of all dyads that are classified as neutral due to such an ambiguity is less than 1%. On average
a group has 2.6 enemies and 2.2 allies (see Table 1).

Our methodology may raise three concerns. First, we assume a time-invariant network. One
might fear that alliances and enmities get reshuffled throughout the war. From a historical per-
spective it appears as if many changes in the system of alliances took place at the end of the
First Congo War, but that alliances remain broadly stable thereafter (cf. Prunier 2011). However,
one might worry that this broad pattern may not apply to small groups, whose behavior is not
equally well-documented by the conflict literature. To get a sense of the potential importance of
the problem, we search for instances in which there is a clear switch in the nature of a dyadic re-
lationship in ACLED. A clear evidence of structural change would be that there exists a threshold
year T ∈ (1998 − 2010) such that two groups would be classified as allies (enemies) if one restricted
attention to the years up to T, while the same two groups would be classified as enemies (allies) if
one considered the years after T. We have eight dyads, a mere 0.2% of the total 3570 dyads that
conform with this pattern. This is a strong indication that in most of the 1% dyads for which
an ambiguity arises, this ambiguity is due to occasional clashes between troops (or one-shot tac-
tical alliances within a single battle) rather than to structural changes in system of alliances and
enmities. This is reassuring for our assumption that the network is time-invariant.26

The second concern is that the construction of the network partly relies on the same ACLED
data that we use to measure the outcome variable (i.e fighting). Here, let us emphasize two
important differences. First, for the network we exploit the bilateral (dyadic) information which
is not used to construct the outcome variable. Second, the network is time-invariant, whereas
our econometric analysis exploits the time variations in fighting efforts, controlling for group fixed
effects, as discussed in more detail below. To further alleviate this concern, in Section 4 we build

25Given that in our theoretical setting all groups are competing, by definition, for the same prize, we require at
least two instances of fighting against each other to code two groups as enemies. As shown below, our results are
robust to alternative coding where groups are enemies when they fight against each other in at least one instance.

26To further alleviate this concern, in the robustness section we restrict the sample to 1998-2007, since there is
anedoctal evidence that after 2007 some militias were wiped out or absorbed by the DRC Army. The results are
robust.
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Figure 6: The figure shows the network of alliances and conflicts in the DRC. Thick lines indicate
alliances, while thin lines indicate enmities. The nodes’ colors and sizes represent their centrality
(cf. Section 2.2).

the network using SIPRI and ACLED data from the period 1998-2001, while the outcome variable
uses the information for the period 2002-2010. This comes at a high cost in term of information
loss since the conflict attains its highest intensity in the initial years. The results are robust, albeit
less precisely estimated.

Third, we are likely to miss some network links. It is likely that we code as neutral some dyads
that are in fact allies or enemies but did not participate into common fighting events (e.g. due to
spatial distance). Such missing links create measurement errors that can bias the estimates of the
fighting externalities (Chandrasekhar and Lewis, 2011). The strategy to tackle this issue is twofold.
On the one hand, we check the robustness of our results to alternative coding rules of alliances and
enmities.27 On the other hand, we perform Monte Carlo simulation to assess the bias associated
with an imperfect observation of missing links.

Figure 6 illustrates the network of alliances and rivalries in DRC. Not surprisingly, the armed
forces of DRC have the highest centrality. The other groups with a high centrality are the Rally
for Congolese Democracy (Goma and Kisangani), the Mayi-Mayi militias, and the foreign armies
of Rwanda, Uganda, Zimbabwe, Namibia, Sudan, and Angola. All these groups are known to have
played a salient role in the Second Congo War.

27We consider a variety of alternative coding rules of alliances and enmities. In addition, we check the robustness
of the results to using alternative data sources. In particular, we supplement our information with that provided in
the ”Non-State Actor Data” of Cunningham, Gleditsch and Salehyan (2013).
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3.4 Econometric Model

The basis of our empirical analysis is Section 2.6, allowing for exogenous sources of heterogeneity
in the OP of groups. Equation (13) can be turned into an econometric equation by assuming that
the individual shocks ϕ̃i comprise both observable and unobservable shifters. More formally, we
assume that ϕ̃i = z′iα + ǫi, where zi is a vector of group-specific observable characteristics, and
ǫi is an unobserved shifter. Replacing xi and ϕi by their respective equilibrium values, yields the
following structural equation:

x∗i = ϕ∗
i (G)− β

n∑

j=1

a+ijx
∗
j + γ

n∑

j=1

a−ijx
∗
j − z′iα− ǫi. (15)

It is important to recall that ϕ∗
i is fully characterized by the externality parameters and the time-

invariant network structure, (β, γ, d−i , d
+
i ) , and is independent of the realizations of individual

shocks (zi, ǫi) (see equation 4 and Section 2.6). Our goal is to estimate the network parameters β
and γ. The estimation is subject to a simultaneity or reflection problem (Manski 1993; Boucher
et al. 2012), a common challenge in the estimation of network externalities. A related issue
in this class of models is that it is difficult to separate contextual effects, i.e., the influence of
players’ characteristics, from endogenous effects, i.e., the effect of outcome variables via network
externalities. In our model, the endogenous effect is associated with the fighting effort exerted by
a group’s allies and enemies. Although our theory postulates no contextual effect, it is plausible
that omitted variables affecting x∗i are spatially correlated, implying that one cannot safely assume
spatial independence of ǫi. Ignoring this problem might yield inconsistent estimates of the spillover
parameters.

The reflection problem can be tackled by using instruments to obtain consistent estimates
of the spillover effects. For instance, in a recent study on public good provision in a network
of Colombian municipalities, Acemoglu, Garcia-Jimeno and Robinson (2014) use as instruments
historical characteristics of local municipalities which are argued to be spatially uncorrelated. In
our case, it is difficult to single out time-invariant group characteristics that affect the fighting
efforts of a group’s allies or enemies without invalidating the exclusion restriction. For instance,
cultural or ethnic characteristics of group i are likely to be shared by its allies. For this reason, we
take the alternative route of identifying the model out of exogenous time-varying shifters affecting
the fighting intensity of allies and enemies over time. This panel approach has the advantage
that we can difference out any time-invariant heterogeneity, thereby eliminating the problem of
correlated fixed effects.

Panel Specification – We maintain the assumption of an exogenous time-invariant network,
and assume that the conflict repeats itself over several years. We abstract from reputational effects,
and regard each period as a one-shot game. These are strong assumptions, but they are necessary to
retain tractability. The variation over time in conflict intensity is driven by the realization of group-
and time-specific shocks, amplified or offset by the endogenous response of the players which, in
turn, hinges on the network structure. More formally, we allow both x∗i and ϕ̃i to be time-varying:

ϕ̃it = z′itα+ ei + ǫit. (16)

Here, zit is a vector of observable shocks with coefficients α, ei is a vector of (unobservable) time-
invariant group-specific characteristics, and ǫit is a i.i.d., zero-mean unobservable shock. Rainfall
measures are examples of observable shifters zit that will be key for identification. The panel
analogue of equation (15) can then be written as:

Fightit = fei − β × Fight
all

it + γ × Fight
ene

it − z′itα− ǫit. (17)
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where

Fightit = x∗it

Fight
all

it =

n∑

j=1

a+ijx
∗
jt,

Fight
ene

it =

n∑

j=1

a−ijx
∗
jt,

fei = −ϕ∗
i (G)− ei. (18)

The panel dimension allows us to filter out any time-invariant correlated effects by including
group fixed effects fei. However, due to the reflection problem discussed above, the two covariates
Fight

all

it (Total Fighting of Allies) and Fight
ene

it (Total Fighting of Enemies) are correlated with
the error terms. In other words, there is an endogeneity problem because the effort of group i’s
allies and enemies are affected by group i’s effort. Thus, OLS estimates are inconsistent.

The problem can be addressed by an instrumental variable strategy. This requires identifying
exogenous sources of variations in the fighting efforts of group i’s allies and enemies that do not
influence group i’s fighting effort directly. To this aim, we use time-varying climatic shocks (rainfall)
impacting the homelands of armed groups. In line with the empirical literature and historical case
studies (Dell 2012), we focus on local rainfall as a time-varying shifter of OP, and hence the
fighting effort of allies and enemies. We expect groups affected by positive rainfall shocks to fight
less, since local rainfall increases the agricultural surplus, thereby pushing up the reservation wages
of productive labor and, hence, the opportunity cost of fighting. This channel linking rainfall to
conflict has been documented, among others, by Jia (2014), Hidalgo et al. (2010), Miguel et al.
(2004), Vanden Eynde (2011).

To be a valid instrument, rainfall in the homelands of the allies (enemies) must be correlated
with the allies’ (enemies’) fighting efforts. We show below that this is so in the data. The exclusion
restriction requires that rainfall in the homelands of group i’s allies and enemies have no direct
effect on fighting efforts of group i. Although rainfall is likely to be spatially correlated, due to the
proximity of the homelands of allied or enemy groups, this is not a problem since we control for
the rainfall in group i’s homeland in the second-stage regression. For instance, suppose that group
i has a single enemy, group k, and that the two groups live in adjacent homelands. Rainfall in k’s
homeland is correlated with rainfall in i’s homeland. However, rainfall in k’s homeland is a valid
instrument for k’s fighting effort, as long as rainfall in i’s homeland is included as a non-excluded
instrument. A potential issue arises if rainfall is measured with error, and measurement error has
a non-classical nature. We tackle this issue below in the robustness analysis.

Potential violation of the exclusion restriction could arise if there were intense within-country
trade. For instance, a drought destroying crops in Western Congo could translate into strong price
increases of agricultural products throughout the entire DRC, thereby affecting fighting in the
Eastern part of the country. Such a channel may be important in a well-integrated country with
large domestic trade. Yet, in a very poor country like the DRC with a disintegrating government,
very lacunary transport infrastructure and a disastrous security situation, effective transport costs
are high and inter-regional trade is limited for most goods. The result is a very localized economy
dominated by subsistence farming. Hence, spillovers through trade are unlikely to be large.
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3.5 Estimates of the Fighting Externalities

We now present the estimates of the system of structural equations (17) based on our panel of 85
armed groups over 1998-2010. In all specifications, we include group fixed effects and year dummies,
and cluster standard errors at the group level.

Table 2 displays the baseline results. Column (1) starts with an OLS specification. We control
for current and lagged rainfall at the centroid of group’s homeland in a flexible way, allowing for
both linear and quadratic terms. Total Fighting of Enemies increases a group’s fighting effort,
whereas Total Fighting of Allies decreases it. These results conform with the prediction of the
theory, although the coefficient of Total Fighting of Allies is not statistically significant.

In column (2) we add a set of time-varying control variables by assuming that common (unob-
served) shocks have heterogeneous effects across groups that differ by some observable characteris-
tics. More specifically, we build three time-invariant group characteristics and interact each of them
with year dummies. The first characteristic corresponds to a binary variable capturing whether a
group is a government organization (as opposed to a non-state actor). State organizations benefit
from stable funding and legitimacy conveyed by the law, and thus tend to be larger and better
equipped than local militias and rebel groups. For these reasons, government armies are likely to
be affected differently from informal armed groups by global economic and political shocks. The
two other characteristics are proxies for groups’ size.28 Both are binary variables coding, respec-
tively, for groups with at least 10 enemies, and for groups involved in at least 20 violent events
per year outside of the DRC (each variable captures groups between the top 5-10 percent of the
sample). The results are not sensitive to using different thresholds or to dropping either of them.
The estimates of column (2) are very similar to those of column (1).

Due to the reflection problem discussed above, OLS estimates are inconsistent. Therefore, in the
next columns, we replicate specifications of columns (1)-(2) in a 2SLS setup using first a restricted
set of instruments (columns 3 and 4), and then an enlarged one (columns 5 and 6). The related first
stage regressions are reported in Table 3, where, for presentational purposes, only the coefficients of
the excluded instruments are displayed. Remarkably, there is a stable pattern across all first-stage
regressions by which rainfall in the enemies’ homelands affects negatively the fighting effort of the
enemy groups (and not that of allied groups), whereas rainfall in the allies’ homelands decreases
the fighting effort of the allied group (and not that of the enemies). This pattern conforms with
the theoretical predictions.

In Columns (3) and (4) of Table 2, Total Fighting of Enemies and Total Fighting of Allies are
instrumented, respectively, by the one-year lag of average rainfall in the homelands of enemies and
allies, including both a linear and a quadratic term in the first-stage regressions. In column (3),
the coefficients of the variables of interest have the expected sign and are significant at the 5%
level. The coefficients are larger than in the OLS regressions, suggesting that the non-instrumented
specification suffers from an under-estimation bias due to the omission of the network externalities.
Column (4) includes the large set of time-varying controls. This leads to a weak instrument problem
and the coefficient of Total Fighting of Enemies turns insignificant.

Columns (1)-(4) of Table 3 display the first stage regressions for Total Fighting of Enemies and
Total Fighting of Allies corresponding to columns (3)-(4) in Table 2. We see that the instruments
have statistically significant coefficients, with the expected sign, but their overall statistical power
is borderline in absence of time-varying controls (with a Kleibergen-Paap F-stat equal to 9.34)
and becomes weak once controls are included (F-stat equal to 6.65). This issue is solved below
by expanding the set of instruments. The null hypothesis of the Hansen J test is not rejected

28We have no good data for troop size. Such data exist only for a small subset of the groups, see the International
Institute of Strategic Studies (IISS) or the Small Arms Survey (SAS).
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Table 2: Baseline regressions (second stage).

Dependent variable: Total Fighting

(1) (2) (3) (4) (5) (6)

Tot. Fight. Enemies 0.09*** 0.06*** 0.12** 0.08 0.14*** 0.09**
(0.02) (0.02) (0.05) (0.07) (0.05) (0.05)

Tot. Fight Allies -0.01 -0.02 -0.16** -0.17** -0.15* -0.14**
(0.02) (0.01) (0.07) (0.08) (0.08) (0.07)

Group FE, annual TE, rain controls Yes Yes Yes Yes Yes Yes
Additional controls No Yes No Yes No Yes
Estimator OLS OLS IV IV IV IV
Set of Instrument Variables n.a. n.a. Restricted Restricted Full Full
Observations 1190 1190 1190 1190 1105 1105
R-squared 0.340 0.415 0.241 0.323 0.254 0.364

Notes: An observation is a given armed group in a given year. The panel contains 85 armed groups between
1998 and 2010. Robust standard errors allowed to be clustered at the group level in parentheses. Significance
levels are indicated by * p < 0.1, ** p < 0.05, *** p < 0.01.

(with p-value of 0.53) indicating that the overidentification restrictions are valid. Interestingly, the
fighting effort of enemies is highly correlated with rainfalls in enemies homeland while the total
fighting effort of the allies is highly correlated with the rainfall in allies homeland. This reassuring
pattern is robust across all columns of Table 3. Moreover, consistent with the findings of literature
discussed above, a higher rainfall in period t − 1 predicts a lower fighting effort. This pattern is
confirmed in specifications including both the current and lagged rainfall.

In column (5) of Table 2, we consider a larger set of instruments comprising current-year
rainfall (linear and quadratic terms) as well as current and lagged rainfalls of degree 2 neighbors
(i.e. enemies of enemies and of enemies of allies).29 The second-stage coefficients are stable and
significant. The statistical power of the first stage (columns (5)-(6) in Table 3) is now high above
the conventional threshold of 10 (F-stat at 19.16).

Column (6) of Table 2 – our preferred specification – includes the additional time-varying
controls and uses the expanded set of instruments. The two coefficients of interest have the expected
signs and are statistically significant at the 5% level. The statistical power of the instruments in
the first stage (columns (7)-(8) in Table 3) is large, with a Kleibergen-Paap F-statistic equal to
13.71. The estimates of the fighting externalities are quantitatively large. A one standard deviation
(s.d.) increase in Total Fighting of Enemies (93 violent events) translates into a 0.37 s.d. increase
in the Fighting Effort of the group (+8.4 violent events). A one s.d. increase in Total Fighting of
Allies (75 violent events) translates into a 0.46 s.d. decrease in the Fighting Effort of the group
(-10.5 violent events). We also check that, conditional on estimates of β and γ, the second-order
condition, (3), holds true for all groups in conflict. This guarantees that we estimate an interior
equilibrium where the invertibility condition of Proposition 1 is also satisfied.

29When we use the current and past average rainfall in enemies’ and allies’ homelands as instruments, we also
control for the current and past average rainfall in the own group homeland in the second-stage regression. This
is important, since the rainfall in enemies’ and allies’ homelands is correlated with the rainfall in the own group
homeland. Omitting the latter would lead to a violation of the exclusion restriction.
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Table 3: Baseline regressions (first stage).

IV regression of column (3) IV regression of column (4) IV regression of column (5) IV regression of column (6)

Dep. Variable: Tot.Fi. Enemy Tot.Fi.Allied Tot.Fi. Enemy Tot.Fi.Allied Tot.Fi. Enemy Tot.Fi.Allied Tot.Fi. Enemy Tot.Fi.Allied

(1) (2) (3) (4) (5) (6) (7) (8)

Rain (t-1) Enemies -1.45*** 0.03 -1.30*** 0.07 -1.34*** 0.18 -1.20*** 0.15
(0.23) (0.10) (0.27) (0.09) (0.24) (0.11) (0.30) (0.12)

Sq. Rain (t-1) Ene. 0.00*** 0.00 0.00*** 0.00 0.00*** 0.00 0.00*** 0.00
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Rain (t-1) Allies -0.01 -1.02*** -0.03 -0.99*** -0.26 -0.74*** -0.32 -0.73***
(0.22) (0.15) (0.18) (0.14) (0.29) (0.19) (0.29) (0.19)

Sq. Rain (t-1) Alli. 0.00 0.00*** 0.00 0.00*** 0.00 0.00*** 0.00 0.00***
(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)

Current Rain Enemies -0.97*** 0.10 -0.99*** 0.08
(0.25) (0.13) (0.27) (0.13)

Sq. Curr. Rain Ene. 0.00*** -.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00)

Current Rain Allies -0.21 -0.67*** -0.30 -0.66***
(0.18) (0.12) (0.20) (0.12)

Sq. Curr. Rain Alli. 0.00 0.00*** 0.00* 0.00***
(0.00) (0.00) (0.00) (0.00)

Current rain enemies of enemies -0.11*** -0.05* -0.10** -0.04
(0.04) (0.03) (0.04) (0.03)

Sq. current rain enemies of enemies 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00)

Current rain enemies of allies -0.12 -0.03 -0.08 -0.04
(0.08) (0.04) (0.08) (0.04)

Sq. current rain enemies of allies 0.00* 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00)

Rain enemies of enemies (t-1) -0.15*** -0.06** -0.19*** -0.07**
(0.05) (0.03) (0.05) (0.03)

Sq. rain enemies of enemies (t-1) 0.00* 0.00 0.00** 0.00**
(0.00) (0.00) (0.00) (0.00)

Rain enemies of allies (t-1) 0.02 -0.07 0.04 -0.04
(0.10) (0.05) (0.11) (0.04)

Sq. rain enemies of allies (t-1) 0.00 0.00 0.00 0.00
(0.00) (0.00) (0.00) (0.00)

F-Stat (Kleibergen-Papp) 9.34 9.34 6.65 6.65 19.16 19.16 13.71 13.71
Hansen J (p-value) 0.53 0.53 0.19 0.19 0.19 0.19 0.26 0.26
Observations 1190 1190 1190 1190 1105 1105 1105 1105
R-squared 0.47 0.63 0.57 0.65 0.56 0.67 0.63 0.69

Notes: An observation is a given armed group in a given year. The panel contains 85 armed groups between 1998 and 2010. Robust standard errors allowed to be clustered
at the group level in parentheses. Significance levels are indicated by * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 4: Sample splitting.

Dependent variable: Total Fighting

(1) (2) (3) (4) (5) (6)

Tot. Fight. Enemies 0.12*** 0.10** 0.17*** 0.03 0.04 0.09*
(0.04) (0.04) (0.06) (0.13) (0.04) (0.05)

Tot. Fight Allies 0.02 0.00 -0.19** -0.18*** -0.02 -0.02
(0.03) (0.03) (0.08) (0.06) (0.04) (0.04)

Group FE, annual TE, rain controls Yes Yes Yes Yes Yes Yes
Additional controls No Yes No Yes No Yes
Estimator OLS OLS IV IV IV IV
Set of Instrument Variables n.a. n.a. Restricted Restricted Full Full
F-Stat (Kleibergen-Papp) n.a. n.a. 6.03 4.09 100.00 26.02
Hansen J (p-value) n.a. n.a. 0.38 0.08 0.55 0.09
Observations 850 850 850 850 765 765
R-squared 0.42 0.48 0.28 0.38 0.43 0.51

Notes: An observation is a given armed group in a given year. The panel contains 85 armed groups
between 1998 and 2010. Robust standard errors allowed to be clustered at the group level in parentheses.
Significance levels are indicated by * p < 0.1, ** p < 0.05, *** p < 0.01.

4 Robustness Analysis

In this section, we perform a variety of robustness checks.

4.1 Alternative Specifications

In our benchmark regressions the same data (i.e., the fighting events from ACLED) are used to
measure the network structure and the fighting effort. This is in principle not an issue, since the
identification exploits the time variation in the number of fighting events, whereas the network
structure is time-invariant. However, it is possible to separate the two variables more sharply
by estimating the network from the earlier part of the sample, and then studying the dynamics
of the conflict using the later years of the conflict.30 More precisely, we use the information for
the subperiod 1998-2001 to estimate the network links, and the panel 2002-2010 to estimate the
spillover coefficients. The results are reported in Table 4, the analogue of Table 2. The results
are similar, albeit more fragile due to the one-third reduction in sample size. In particular, the
specification of column (3) yields similar results. However, in our preferred specification of column
(6), which is more demanding, the coefficient of Total Fighting of Allies turns insignificant. It is
reassuring that the signs of the 2SLS second stage coefficients are consistent in all cases with the
theoretical predictions.

The fact that the results are somewhat weaker is no surprise. On the one hand, the subperiod
1998-2001 is very intense in violent events – roughly a third of the total ACLED events in our
sample occurs in this subperiod. Therefore, identifying the model out of the variation over time
during 2002-2010 is bound to yield less precise estimates. On the other hand, the network of
enmities and alliances also is measured with error, and many links are likely to be missed (we show
below that indeed measurement error in the network links yields an attenuation bias in our model).
This problem becomes more severe when we use only four years of data to estimate the links.

30It is impossible to estimate the network using data prior to 1998, since there was a major reshuffling of tactical
alliances between the First and the Second Congo War, as discussed in section 3.1.
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In all following robustness checks (Tables 5-6), we report the results of second-stage regressions
corresponding to our preferred (benchmark) specification of column (6) in Table 2.

Table 5 considers alternative instrumentation and network construction strategies. In column
(1), we use only the rainfalls in the homeland of degree 2 neighbors (i.e., the rain of enemies
of enemies and of enemies of allies) as excluded instruments, following Bramoullé, Djebbari and
Fortin (2009).31 The point estimates in the second-stage regression are similar to our benchmark
results. However, they are estimated less precisely, and the coefficients of Total Fighting of Allies
turns marginally insignificant. Moreover, we face a serious weak instrument problem in the first-
stage regression (where the F-stat is 3.8). This is not surprising since the degree one rainfalls are
controlled for both in the first- and in the second-stage regressions.

In column (2) we follow a conservative identification strategy using the degree one and two
rainfalls in the groups’ historical ethnic homelands as excluded instruments. By construction these
homelands do not overlap spatially, which guarantees that the rainfalls associated with different
groups do not overlap either. As a first step we link as many armed groups as possible to a
corresponding underlying main ethnic group. This is typically the ethnic affiliation of most fighters,
or at least of their leadership circle. For example, the Lord’s Resistance Army is linked to the Acholi
ethnic group. We find an unambiguous match for 94% of all armed groups, and drop the remaining
6%. As a second step, we compute the rainfall averages on the polygons of all ethnic groups,
using the digitalized version by Nunn and Wantchekon (2011) of the map of historical ethnic group
homelands from Murdock (1959). Given that rainfall in ethnic homelands is an imperfect proxy for
rainfall observed by groups in their actual current territory, the power of the first stage falls, and
we suffer from a weak instrument problem. Yet, the point estimates of the second-stage regression
are remarkably similar to the benchmark 2SLS results; only the statistical significance of Total
Fighting of Allies drops.

In column (3)-(4) we address the concern that the results may be driven by many small groups
that have a limited role in the overall conflict. In column (3) we include only groups that have at
least one enemy. This results in a sizeable reduction in the sample size. The coefficients are on
average slightly larger in absolute value than in the baseline regression, and are both significant at
the 5% level. The F-stats of the first stage are about the threshold of 10. In column (4) we restrict
the regressions to groups that have at least one enemy and at least one ally, in order to focus on the
most salient armed forces. Reassuringly, the results are quantitatively larger (again, in absolute
value) than in the benchmark specification, and both coefficients continue to be highly significant.
In summary, these robustness checks show that restricting attention to large players yields larger
and more precisely estimated coefficients.

In column (5), we exclude all events involving group i when computing the total fighting efforts
of allies and enemies of group i. If, for example, the enemies of the LRA are involved in 100
fighting events in year 2000, out of which 30 involve the LRA, then the measure of Total Fighting
of Enemies used in the regression would take the value of 70. The results are similar, although the
coefficient of Total Fighting of Enemies turns marginally insignificant.

In column (6), we also control for the total fighting of neutral groups, i.e., those classified neither
as allies nor as enemies. Our theory predicts that the coefficient of neutrals should be zero. In
line with the theory, the coefficients of Total Fighting of Enemies and Total Fighting of Allies are
virtually unchanged, and the coefficient of Total Fighting of Neutrals is zero, as predicted by the
theory.

31Note that, contrary to their model, in our theory there is no reason why an instrumentation based on first-order
links should yield inconsistent estimates. As discussed above, the case for our regressions to be contaminated by
contextual effects is weak in our panel regression, since time-invariant contextual effects are differenced out.
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Finally, in column (7) we control for the lagged total fighting effort of both enemies and allied.
The coefficient on the lagged variables are insignificant, whereas the coefficients of interest are
hardly changed.

In Table 6, we perform a battery of additional robustness checks where we either restrict the
set of fighting events considered (columns (1)-(3)), or we use alternative coding of enmities and
alliances in the construction of the network (columns (4)-(7)).

The motivation for the robustness checks in columns (1)-(2) is that ideally fighting intensity
should weight the importance of the events in which each group is involved. However, detailed
information about the size of each event (e.g., the number of casualties) is far too sparse for us
to be able to run weighted regressions. Nevertheless, we have access to some binary coding from
ACLED. In column (1) we drop all events with a number fatalities equal to zero (i.e. we retain
the events associated with a positive number of fatalities or for which the information about the
number of fatalities is missing). The coefficients of interest remain very similar to the ones of the
baseline regression of column (6) of Table 2, and both variables are significant at the 5% level. In
column (2) we use only events that are classified in ACLED as battles, ignoring other events. The
estimated coefficients have the same sign as in the benchmark case, and are quantitatively similar.
Interestingly, the estimated externalities are stronger in column (2), indicating that restricting
attention to battles, which are more important events than small riots, increases the point estimates.

In column (3) we restrict the sample to 1998-2007. The motivation is that after 2007 a few
militias were either annihilated (e.g., the Allied Democratic Front) or absorbed by larger combatant
groups (most notably, the DRC Army). In spite of the limited number of such episodes, the
disappearances or mergers of some groups contradicts the assumption that the network is time-
invariant. Reassuringly, the estimates are of similar magnitude than in the baseline regression of
column (6) of Table 2 and are statistically significant.

In column (4) we code as enemies (instead of neutrals) groups that normally fight against
each other, but that were observed occasionally fighting on opposite sides. The magnitude of
the coefficients remains similar, although Total Fighting of Enemies now falls short of the 10%
significance threshold. In column (5) we code a dyad of armed groups as enemies if they fight
each other at least once and never fight together on the same side (recall that in the benchmark
we required two groups to fight each other twice or more). The coefficients of the two variables
remain of similar magnitude and are highly significant. In contrast, in column (6) we follow a
more restrictive rule: we code two groups as enemies if they are observed fighting on opposite sides
in at least two events (but never on the same side), and code two groups as allies if they have
been observed fighting together on the same side at least twice (but never against each other).
The two variables of interest continue to have the expected sign and are statistically significantly
different from zero. Finally, in column (7) we add also links among groups listed in Cunningham
et al. (2013). Our results are robust with both coefficients of interest being significant and of the
expected sign.

In Table 7 we perform a series of robustness checks with respect to the definition of groups. One
might worry that the assumption that groups act non-cooperatively is inappropriate for a number
of strong alliances that should be better treated as unitary coalitions. In our benchmark analysis
we have followed the rule of treating groups as separate entities whenever they are classified as such
by ACLED. This agnostic way of proceeding has the advantage of not requiring any discretional
coding decision.32 However, it is useful to check the robustness of our results in this dimension.
Thus, in column (1) of Table 7 we treat all different fractions of the Rally of Congolese Democracy

32Further, note that even among strongly allied groups there is sometimes in-fighting. For example, the clashes
between RCD’s Goma and RCD’s Kisangani fraction are infamous, as are the fights between different Mayi-May
militias.
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Table 5: Robustness to alternative IVs and network construction.

Dependent variable: Total Fighting

(1) (2) (3) (4) (5) (6) (7)
Degree 2 only Ethnic IV With at least With at least Excluding With neutrals With lags

1 enemy 1 ally & 1 en. bilat. evts.

Tot. Fight. Enemies 0.12** 0.08** 0.09** 0.11** 0.05 0.11** 0.08**
(0.06) (0.04) (0.04) (0.05) (0.04) (0.05) (0.04)

Tot. Fight Allies -0.26 -0.15 -0.18** -0.26** -0.14** -0.16* -0.14**
(0.18) (0.13) (0.09) (0.13) (0.06) (0.08) (0.07)

Tot. Fight Neutrals 0.00
(0.01)

Tot. Fight. Enemies (t-1) 0.00
(0.02)

Tot. Fight Allies (t-1) 0.03
(0.02)

Group FE, annual TE, add. cont. Yes Yes Yes Yes Yes Yes Yes
Zones used for IV construction Group pr. Eth. home Group pr. Group pr. Group pr. Group pr. Group pr.
Excluded instruments used Deg 2 Deg 1&2 Deg 1&2 Deg 1&2 Deg 1&2 Deg 1&2 Deg 1&2

Lag 0&1 Lag 0&1 Lag 0&1 Lag 0&1 Lag 0&1 Lag 0&1 Lag 0&1
F-Stat (Kleibergen-Papp) 3.82 3.55 9.95 7.87 12.03 15.72 24.73
Hansen J (p-value) 0.74 0.16 0.34 0.62 0.23 0.29 0.54
Observations 819 1027 819 559 1105 1105 1020
R-squared 0.28 0.36 0.34 0.27 0.35 0.33 0.39

Notes: An observation is a given armed group in a given year. The panel contains 85 armed groups between 1998 and 2010. Robust standard
errors allowed to be clustered at the group level in parentheses. Significance levels are indicated by * p < 0.1, ** p < 0.05, *** p < 0.01.
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Table 6: Robustness to alternative definitions of events and links.

Dependent variable: Total Fighting

(1) (2) (3) (4) (5) (6) (7)
Only violent Only battles Only until Code incons. Code as enemy when Code as ally only when Add links from

events year 2007 as enemy opp. in at least 1 event at least 2 joint events Cunningham et al.

Tot. Fight. Enemies 0.09** 0.11** 0.09** 0.06 0.11*** 0.11** 0.10*
(0.05) (0.05) (0.04) (0.05) (0.03) (0.04) (0.06)

Tot. Fight Allies -0.14** -0.17** -0.13* -0.10** -0.19** -0.10* -0.12*
(0.07) (0.08) (0.08) (0.05) (0.09) (0.05) (0.07)

Group FE, annual TE, add cont. Yes Yes Yes Yes Yes Yes Yes
F-Stat (Kleibergen-Papp) 13.71 12.61 9.10 10.76 7.58 19.05 16.04
Hansen J (p-value) 0.26 0.45 0.77 0.51 0.89 0.34 0.30
Observations 1105 1066 850 1105 1105 1105 1105
R-squared 0.36 0.34 0.40 0.43 0.27 0.40 0.38

Notes: An observation is a given armed group in a given year. The panel contains 85 armed groups between 1998 and 2010. Robust standard errors allowed to be clustered
at the group level in parentheses. Significance levels are indicated by * p < 0.1, ** p < 0.05, *** p < 0.01.
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(RCD) as one single actor. Our variables of interest still have the expected sign and are significant
at the 5% level. In column (2) we merge the RCD’s Goma fraction (RCD-G) with its main ally,
Rwanda, and similarly we merge RCD’s Kisangani fraction (RCD-K) with its main ally, Uganda.
In column (3) we merge the various DRC army fractions into two main actors. Further, in column
(4) we merge all local Mayi-Mayi militias into one single actor. In column (5) all Rwandan military
fractions are treated as a single group. Finally, in column (6) we treat as separate actors all mutinies
of the DRC army. The results are robust across all specifications.

4.2 Measurement Error in Rainfall

A concern with our IV strategy is that the rainfall variable may be subject to non-classical mea-
surement error. In particular, fighting activities may destroy rain gauges located in battlefields. As
a result, our gauge-based GPCC measure might systematically underreport precipitations in war
zones. The issue is twofold: first, mis-measurement may result in a spurious negative correlation
between rainfall and fighting in the first-stage regression.33 Second, our identification hinges on
rainfall in the homelands of group i′s enemies/allies having no direct effect on group i′s fighting
effort after conditioning on the rainfall in group i′s homelands. However, the exclusion restriction
would be invalidated if the measurement error in the instruments were correlated with group i′s
fighting effort.

To study this potential problem, we consider satellite rainfall estimates from TRMM or GPCP
(see the data description in Section 3.2). Clearly satellite-based measurements are not affected by
the dynamics of conflict. However, they provide less direct and far less accurate rainfall estimates
than do gauges.34 Therefore, it is not surprising that, if we use satellite rainfall data instead of
gauge-based data as instruments, we run into a severe weak instrument problem. However, the
satellite estimates can be used to infer whether gauged-based measures are biased. To this aim,
consider the following simple model:

rain
sat

ct = ψsat

c + rainct + vsatct (19)

rain
gau

ct = ψgau

c + rainct + ṽgauct (20)

where c denotes the grid cell at which rainfall is measured, rainct is the true (unobservable)
rainfall, and vsatct and ṽgauct are the measurement errors. vsatct is assumed to be i.i.d.. The error term
of the gauge measure is potentially subject to violence-driven measurement error. This possibility
is allowed by letting ṽgauct = ξ × violencect + vgauct where vgauct is an i.i.d error term. One can
eliminate rainct from the previous system of equations and obtain:

rain
gau

ct = ψc + rain
sat

ct + ξ × violencect + νct (21)

where ψc = ψgau

c − ψsat

c and νct = vgauct − vsatct are, respectively, a grid-cell fixed effect and an i.i.d.
disturbance. Our null hypothesis is that ξ = 0. If ξ 6= 0, the gauge-based measure suffers with
non-classical measurement error.

We run a regression based on equation (21), measuring violence by the number of conflicts in
ACLED. Table 8 summarizes the results. Columns (1)-(4) report the results when satellite-based
rainfall measures are retrieved from TRMM. Column (1) is a cross-sectional specification; Column

33Remember, though, that we also use lagged rain to predict current fighting intensity.
34Romilly and Gebremichael (2011) discuss the shortcomings of satellite-based rainfall estimates. On the one hand,

satellite rainfall estimates are contaminated by sources such as temporal sampling, instrument and algorithm error.
On the other hand, a number of studies based on U.S. data document that their performance varies systematically
with season, region and elevation, resulting in potentially severe biases.
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Table 7: Robustness to alternative group definitions.

Dependent variable: Total Fighting

(1) (2) (3) (4) (5) (6)
Merging all Merging RCD-G Merging all DRC Merging all Mayi- Merge Rwandan Treating mutiny

RCD fractions to Rwanda and government groups Mayi local militias military fractions events as
into a single actor RCD-K to Uganda into 2 main fractions into a single actor into a single actor separate actors

Tot. Fight. Enemies 0.12** 0.08* 0.07* 0.10** 0.09** 0.10**
(0.05) (0.05) (0.04) (0.05) (0.04) (0.05)

Tot. Fight Allies -0.18** -0.10* -0.12** -0.18* -0.12** -0.14*
(0.08) (0.06) (0.06) (0.10) (0.06) (0.07)

Group FE, annual TE, add cont. Yes Yes Yes Yes Yes Yes

F-Stat (Kleibergen-Papp) 13.86 16.21 11.07 8.44 15.58 14.21
Hansen J (p-value) 0.25 0.50 0.37 0.64 0.27 0.54
Observations 1053 1066 1079 1014 1092 1144
R-squared 0.38 0.49 0.37 0.35 0.42 0.36

Notes: An observation is a given armed group in a given year. The panel contains 85 armed groups between 1998 and 2010. Robust standard errors allowed to be
clustered at the group level in parentheses. Significance levels are indicated by * p < 0.1, ** p < 0.05, *** p < 0.01.
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(2) includes grid-cell fixed effects – consistent with equation (21). In Columns (3) and (4) we
consider a log-linear specification where the two rainfall measures are log-scaled; this corresponds
to a multiplicatively separable specification of model 20. Finally, we replicate the same set of four
specifications in Columns (5)-(8) with the GPCP satellite measure. Year dummies are included in
all regressions. Standard errors are clustered at the grid-cell level.35

As expected, there is a highly significant positive correlation between the gauge- and the
satellite-based rainfall measures. Most important, all estimates of ξ are not significantly differ-
ent from zero, with its point estimates switching sign across specifications. The hypothesis that
ξ is negative due to the destruction of gauges in battlefields is strongly rejected, especially in
specifications with grid-cell fixed effects, which are consistent with our panel specification where
parameters are identified out of the variation over time in rainfall. In these columns, the point
estimates of ξ are consistently positive and statistically insignificant. We conclude that there is no
evidence that the gauge-based GPCC precipitation data are subject to non-classical measurement
error in the DRC.

4.3 Measurement Error in Network Links

Another concern here is that the network may be measured with error. Recent research by Chan-
drasekhar and Lewis (2011) shows that regression of economic outcomes on network neighbors’
outcomes, in the presence of measurement error of network links, can give rise to inconsistent es-
timates.36 Moreover, the bias can work in different directions, and there is no general remedy to
correct it.

In this section, we follow aMonte Carlo approach based on rewiring links in the observed network
at random, and measuring the robustness of our estimates in such perturbed networks. We consider
different assumptions about the extent and nature of measurement error of the network. More
specifically, we postulate a data generating process, and then we introduce a specific (plausible)
model of mis-measurement of network links. Then, we estimate the model as if the econometrician
did not know the true network, but had to infer it from data measured with error. This procedure
is generated for a large number of realizations of mis-measurement errors (1,000 draws per each
case). For each Monte Carlo draw, we consider a data generating process based on the reduced
form equation (14): The true parameters correspond to our baseline estimates, β = 0.14 and
γ = 0.09, and the true network corresponds to the one used in our baseline estimation after
rewiring a (sub-)set of alliances/enmities/neutral links according to a binomial process with a
probability that is invariant across the draws. Then the benchmark 2SLS specification (Column
6, Table 2) is estimated on this fake dataset under the assumption that the network observed by
the econometrician is identical to the baseline one before rewiring. Iterating over the Monte Carlo
draws yields the sampling distribution of the estimates of β and γ subject to link measurement
error.

The results are reported in Table 9. Each pair of columns refers to a particular mis-measurement
probability, namely the probability governing the binomial re-wiring process. From left to right, we
assume that the probability that links are measured with error is zero (no measurement error), 1%,
10%, 20%, 50% and one (pure noise), respectively. In all cases we report the mean and standard
deviations of the sampling distribution based on 1,000 simulations.

35Recall that the GPCP satellite measure is only available at the 2.5×2.5 degree level, i.e., for larger cells than the
two other measures that are at the 0.5×0.5 degree level. In this case, we cluster at the 2.5×2.5 cell level.

36It has been proven, however, that likelihood-based inference while ignoring the missing data mechanism leads to
unbiased estimates under the assumption of missingness at random (MAR) (Little and Rubin, 2002). Mohan et al.,
(2013) provide conditions on the network for recoverability of parameters even when MAR is violated.
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Table 8: Measurement error in rainfall.

Dependent variable: GPCC gauge rainfall measure

(1) (2) (3) (4) (5) (6) (7) (8)
model linear log-linear linear log-linear

# ACLED conflict events 0.017 0.008 0.009 0.001 -0.069 0.016 -0.016 0.005
(0.032) (0.012) (0.008) (0.003) (0.057) (0.014) (0.014) (0.004)

TRMM satellite rainfall measure 0.639*** 0.513*** 0.714*** 0.619***
(0.018) (0.012) (0.015) (0.013)

GPCP satellite rainfall measure 0.790*** 1.073*** 0.843*** 1.233***
(0.044) (0.081) (0.055) (0.100)

(0.5 x 0.5) Grid Cell FE No Yes No Yes No Yes No Yes
Annual TE Yes Yes Yes Yes Yes Yes Yes Yes

Observations 9893 9893 9893 9893 9893 9893 9893 9893
R-squared 0.578 0.667 0.604 0.684 0.555 0.601 0.541 0.587

Notes: An observation is a given cell of resolution 0.5 x 0.5 degrees in a given year. The panel contains 761 cells covering DRC between
1998 and 2010. In Columns 3,4,5,6 all rainfall variables are in log. Robust standard errors are clustered at the (0.5 x 0.5) cell level in
Columns 1-4 and at the (2.5 x 2.5) cell level in Columns 5-8. Significance levels are indicated by * p < 0.1, ** p < 0.05, *** p < 0.01.
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In the absence of measurement error – Columns 1 and 2 – we see that the mean of the sampling
distribution is equal to the true values of the parameters. This confirms that our estimator is
consistent. Consider, next, the pair of columns corresponding to interior probabilities of mis-
measurement (1%, 10%, 20% and 50%). For instance, focus on the 10% measurement error case
(fifth and sixth columns). In the first row (enmity links only), we draw from a distribution where
each enmity link has a probability 10% to be in reality a neutral relationship (no link), whereas
each neutral (no link) has a probability 10% to be in fact an enmity link. Since the number of
neutrals exceeds by far that of enmities, this perturbation implies that in reality there are more
enmity links than we observe. As expected, this experiment affects the estimate of γ more than it
affects that of β. The estimate of β is close to the no measurement error benchmark (first column)
at the three digit level, whereas the estimate of γ falls from 0.091 to 0.074. Namely, measurement
error implies an attenuation bias. Next, consider the second row (alliance links only). This is the
polar opposite scenario: alliance (rather than enmity) links are measured with error. Now, the
estimate of β falls from 0.141 to 0.123, while the estimate of γ increases slightly. Finally, in the
third row, we allow mis-measurement of both enmity and alliance links. In this case the estimate
of β falls to 0.126 and that of γ falls to 0.08. A similar pattern is observed in the other interior
columns. As one moves to the right, i.e., towards larger measurement errors, the attenuation bias
becomes stronger. In the last two columns, when the econometrician observes pure noise for enmity
(alliance) links, the estimate of the γ (β) tends to zero.

The lesson from this section is twofold. First, the Monte Carlo generated measurement errors
in the links leads to an attenuation bias. This suggests that, under the plausible assumption that
some information about existing links is missing, our regression analysis underestimates the spillover
effects. Second, the extent of the bias is quantitatively modest. A measurement error of the order
of 10% (which we regard as fairly large) yields an underestimate of the spillover parameters of the
order of 11%-12%. Overall, this section confirms that our baseline estimates are robust to link
measurement errors.

5 Policy Analysis

In this section, we perform some policy analysis. In particular, we perform two counterfactual
exercises. First, we assess the contribution of each armed group to the conflict by performing a
key player analysis as outlined in Section 2.4. The analysis has important policy implications.
For instance, an international organization that aims at scaling down violence may be interested
in the extent to which each of the combatant groups contributes to the conflict escalation. A
näıve approach would be to target the groups involved in the largest number of fighting episodes.
However, this would ignore the endogenous network effects that may be very important. Removing
a group affects in a complicated way the incentives for the surviving groups to fight. For instance, if
all agents had only first-order links, removing a group with many allies would not be useful, since its
allies would increase their effort and offset the effect of the removal of the group. To the opposite,
removing a group with many enemies would yield a large reduction in violence. Unfortunately, the
calculation is far more complicated in the presence of a rich network structure, since the response of
the surviving players depends also on higher-order links. Thus, the information about the structure
of the network and the externality parameters is essential to guide the policy intervention.

The key player analysis is subject to some caveat. First, it is not clear how the international
community could wipe out large armed groups unless at the cost of an unlikely large-scale military
operation. Second, the removal of a large group may induce a reshuffling of alliances that our model
is not well-suited to predict. With this in mind, in the second part of this section we study the effect
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Table 9: Monte Carlo simulations testing link mismeasurement.

Probability of mismeasurement 0 0.01 0.1 0.2 0.5 1

β γ β γ β γ β γ β γ β γ

Enmity links only Mean 0.141 0.091 0.141 0.089 0.141 0.074 0.140 0.061 0.144 0.027 0.143 0.001
S.D. 0.001 0.002 0.003 0.007 0.006 0.017 0.009 0.026 0.012 0.032 0.007 0.019

Alliance links only Mean 0.141 0.091 0.138 0.092 0.123 0.096 0.103 0.097 0.044 0.098 0.001 0.091
S.D. 0.001 0.001 0.004 0.013 0.016 0.025 0.025 0.028 0.036 0.032 0.009 0.010

Alliance & Enmity links Mean 0.141 0.091 0.139 0.091 0.126 0.080 0.106 0.065 0.044 0.023 0.001 -0.001
S.D. 0.001 0.002 0.005 0.015 0.018 0.028 0.029 0.035 0.042 0.043 0.017 0.021

Notes: This table reports the Mean and Standard Deviations of the Monte Carlo sampling distributions (1000 draws) of the 2SLS estimates of β and
γ for different probabilities of link mismeasurement. The data generating process is based on true β = 0.14 and true γ = 0.09.
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of pacification policies, where no armed group is removed but enmity links are selectively turned
into neutral ones. We first consider an international peace process that simultaneously mutes all
enmity links in DRC. Then, we analyze and rank (less ambitious) policies that pacify armed groups
one by one.

5.1 Computation of the Counterfactual Equilibrium

Our analysis below requires us to compute counterfactual Nash equilibria corresponding to either
the sequential removal of each fighting group (key player) or the rewiring of some enmity links
(pacification policy).

We denote by Gb the benchmark network in which all groups fight. We set the externality
parameters equal to β = 0.1407 and γ = 0.0903, in line with the point estimates of column (6) in
Table 2.37 We normalize V to unity. This entails no loss of generality, since changing V would
simply rescale all players’ payoffs and welfare. The equations (6) and (15)–(17) allow us to estimate
ei, the time-invariant unobserved heterogeneity. More formally:

êi = FEi − Λβ̂,γ̂(G)
(
1− Λβ̂,γ̂(G)

)
Γβ̂,γ̂
i (G), (22)

where Γβ̂,γ̂
i (G) = 1/(1 + β̂d+i − γ̂d−i ) and Λβ̂,γ̂(G) = 1 − 1/(

∑
j Γ

β̂,γ̂
j (G)). Consider, next, the

vector of time-varying shifters zit (rainfall, etc.). We perform the key player analysis in an average
scenario in which all time-varying group-specific shifters are collapsed to their sample average,
z̄i =

∑2010
t=1998

zit
13 , and denote by Z̄ = {z̄i} the estimated matrix of shifters. In other words, we

compare an average year of conflict in the benchmark model to its corresponding counterfactual.
Finally, we set the average of the time-varying i.i.d. unobserved shifter,

∑2010
t=1998 ǫit, equal to zero

for all groups.
We can then compute the Nash equilibrium. Following the analysis in Section 2.6, the vector

of equilibrium fighting efforts is obtained by inverting the system of equilibrium conditions implied
by equations (15) and (16). In matrix form, this yields:

x∗(Gb) = (I+ β̂A+(Gb)− γ̂A−(Gb))−1
[
Λβ̂,γ̂(Gb)(1− Λβ̂,γ̂(Gb))Γβ̂,γ̂(Gb)− (Z̄α̂+ ê)

]
(23)

5.2 Key Player Analysis

To perform the key player analysis, we follow the procedure outlined above for each counterfactual
equilibrium Gb\{k} (where Gb\{k} denotes the network after the removal of group k). The vector
of equilibrium fighting efforts is given by equations which are analogous to equation (23) except
that the dimension of the system is reduced by one, the adjacency matrix is A(Gb\{k}) and the

parameters attached to the network structure are replaced by Λβ̂,γ̂(Gb\{k}) and Γβ̂,γ̂(Gb\{k}). We
compute rent dissipation before and after the removal of an agent k. Then, the change in the

rent dissipation, which can be interpreted as the reduction in aggregate fighting, equals ∆RDβ̂,γ̂
k ≡

RDβ̂,γ̂
(
Gb
)
− RDβ̂,γ̂

(
Gb\{k}

)
, where RDβ̂,γ̂

(
Gb
)
≡
∑n

i=1 x
∗
i

(
Gb
)
.

Figure 7 plots the percentage change in the rent dissipation, ∆RDβ̂,γ̂
k versus the observed share

in total fighting x∗k
(
Gb
)
/
∑n

i=1 x
∗
i

(
Gb
)
focusing on the 20 groups whose removal yields the largest

37All second-order conditions (cf. equation (3)) continue to hold for all groups in the counterfactual experiments
in which one player is removed.
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reduction in rent dissipation.38 The Figure is in a log scale to ease the visualization of the main
actors (red acronyms denote groups affiliated to foreign governments). Appendix Table 1 reports

a complete ranking of the agents k according to the change in the rent dissipation ∆RDβ̂,γ̂
k . The

table also reports the contribution of each player to the total fighting when all groups are active.
Two findings are noteworthy. First, although the observed contribution of each group to total

fighting correlates significantly with the reduction in total fighting associated with its removal,
it is significantly below one.39 For instance, the Rwanda-backed Rally for Congolese Democracy
(Goma) is the single most active armed group in the DRC war (excluding the DRC government)
accounting for ca. 8.6% of the total military activity in the DRC. However, its removal would
reduce aggregate fighting by only 2.3%. In contrast, removing the FDLR, the main Hutu rebel
group that fiercely opposes Tutsi influence in the region, would yield a reduction in violence of
13.8%, despite the fact that this group is responsible for less than 7% of the fighting activity.
Some notorious (and virulent) rebel groups such as the LRA (Lord Resistance Army) and Laurent
Nkunda’s CNDP (National Congress for the Defense of People) are not among the top 20. Nor is
the RCD-Kisangani, in spite of being the second most active group.

Second, foreign armies rank among the most disruptive players in the conflict. These include,
in a ranked order, the armies of Rwanda, Uganda, Zimbabwe, Angola, South Africa, Sudan and
Burundi (with Zambia and Chad also ranking among the top 30). It is remarkable that eight out of
the twenty most virulent groups are foreign national armies. This confirms the anecdotal evidence
that foreign intervention has been key for the escalation of the DRC war. To check the robustness of
this result, we constructed a counterfactual in which all foreign troops are removed simultaneously.
In this case, total fighting decreases by 24 percent!

Figure 8 shows the change in the rent dissipation as a function of the key player ranking. On
the one hand, there are only 7 armed groups whose removal would reduce conflict by more than
2.5%. This shows how difficult it is to obtain large results by targeting individual players in a
conflict with so many interconnected armies and militias. On the other hand, there are 5 groups
whose removal would lead to a significant (2.5% or more) escalation rather than containment of
the conflict.40

5.3 Pacification Policies

Using a similar approach, we study the effect of pacification policies aimed at reducing ethnic
and political hostility across groups. As in the key player analysis, we study the change in rent
dissipation associated with counterfactual scenarios. However, instead of removing some groups, we
turn, selectively, some enmity links into neutral links. We start with a drastic (albeit unrealistic)
counterfactual in which all enmity links are rewired into neutral relationships. The effect is very
large: aggregate fighting is reduced by 54%. Not only enmities but also alliance links are important
for the containment of the conflict: re-wiring all friendship links into neutral relationships yields
increase in aggregate fighting by 95%. Thus, an even more dramatic counterfactual scenario is
obtained by rewiring all enmity links and neutral relationships into friendship (i.e., alliance) links.
The result is a reduction of aggregate violence in the order of 91% - almost full peace. This result

38We exclude from this ranking and alternative ones the DRC Army, since the counterfactual removal of the
national army of the country is not an interesting scenario. The DRC army is active in both the benchmark and all
counterfactual scenarios. We simply omit it from the figures and tables below.

39The correlation is between the two variables is 71%. The corresponding Spearman rank correlation is 90%.
40These groups are Mutiny of the Military Forces of DRC (-3.3%), Congolese Libration Movement (-5.2%), RCD-

Kisangani (-5.4%), LRA (-7.5%), and CNDP (-8.8%).
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Figure 7: The figure reports the relative change in the rent dissipation associated with the removal
of each of the top 20 groups in the ranking of the key player analysis versus the respective share
in total fighting before removal. Both axes are in log-scale. The red dashed line indicates the 45
degree line. The acronyms stand for the following: FDLR = Democratic Forces for the Liberation
of Rwanda, RWA-II = Mil. Forc. of Rwanda (2000-), MAYI = Mayi-Mayi Milita, UGA = Mil.
Forc. of Uganda (1986-), LENDU = Lendu Ethnic Militia (DRC), RWA-I Mil. Forc. of Rwanda
(1994-1999) RCD = Rally for Congolese Dem., INTERAH = Interahamwe Hutu Ethnic Militia,
RCD-G = Rally for Congolese Dem. (Goma), UPC = Union of Congolese Patriots, ZBW = Mil.
Forc. of Zimbabwe (1980-), HUTU = Hutu Rebels, SAF = Mil. Forc. of South Africa (1994-1999),
ANG = FAA/MPLA = Mil. Forc. of Angola (1975-), MAYI-P = Mayi Mayi Militia(PARECO),
NAM= Mil. Forc. of Namibia (1990-2005), PUSIC = Party for Unity and Safekeeping of Congo’s
Integrity, EX-RWA = Former Mil. Forc. of Rwanda,(1973-1994), SUD = Mil. Forc. of Sudan
(1993-) and BUR = Mil. Forc. of Burundi (1996-2005). Group names indicated in red refer to
government groups.

38



10 20 30 40 50 60 70 80
−10

−5

0

5

10

15

rank k

∆
R
D

β̂
,γ̂

k
[%

]

Figure 8: The figure shows the relative change in the rent dissipation associated with the removal
of group k as a function of the key player ranking. Forces affiliated to the DRC army are not
included in the figure.

echoes the insight of the theoretical analysis of the regular graph in Section 2.5.41

Since an intervention that wipes out all enmities in DRC would be utopistic, we consider a less
ambitious targeted policy aimed to mute all enmity links associated with individual groups (i.e., we
pacify one group at a time). Figure 9 shows the results (in logarithmic scale) focusing on the local
militias whose pacification triggers a reduction in violence larger than 1%.42 The largest effect is
obtained from pacifying the RCD-Goma (17%), followed by FDLR (9.68%) and RCD-Kisangani
(8.74%). As the figure shows, some of these groups are small players in terms of total contribution
to violence. Appendix Table 2 reports the rent dissipation for all groups. Surprisingly, there are
a few cases in which the pacification policy appears to be counterproductive: Ngiti Ethnic Militia,
Alliance for Democratic Change, Alur Ethnic Militia.

6 Conclusion

In this paper, we construct a theory of conflict in which different groups compete over a fixed amount
of resources. We introduce a network of alliances and enmities that we model as externalities added
to a Tullock contest success function. Alliances are beneficial to each member, but are not unitary
coalitions. Rather, each player acts strategically vis-à-vis both allies and enemies. We view our
theory as especially useful in conflicts characterized by high fragmentation, non-transitive relations
and decentralized military commands, all common features of civil conflicts.

We apply the theory to the analysis of the Second Congo War, one of the bloodiest civil conflicts
in modern history. Our estimation of the network externalities is similar methodologically to that
followed in the recent work of Acemoglu, Garcia-Jimeno and Robinson (2014) who tackle a reflection
problem through an instrumental variable strategy. While they rely on historical information,

41The counterfactual scenarios above can be alternatively interpreted as a quantitative assessment of the mecha-
nisms of our theory in explaining the data. Rewiring all alliances into neutral links is identical to setting the fighting
spillover β = 0, whereas rewiring all enmities into neutral links is identical to setting γ = 0.

42The effect of pacifying foreign armies would be very large. However, the interpretation of this policy is ambiguous
when applied to national armies. The reduction in rent dissipations associated with pacifying foreign armies are:
Angola 77%, Namibia 21%, Rwanda 17%, Zimbabwe 15%, Chad 12%, Sudan 11%, Uganda 8%, South Africa 3%.
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Figure 9: The figure reports the relative change in the rent dissipation associated with the pacifi-
cation of enmity links with the DRC government of the top 10 local groups in the ranking of the
key links analysis versus the respective share in total fighting before pacification. Both axes are in
log-scale. The red dashed line indicates the 45 degrees line. The acronyms stand for the following:
FDLR = Democratic Forces for the Liberation of Rwanda, MAYI = Mayi-Mayi Milita, LENDU
= Lendu Ethnic Militia (DRC), LRA = Lord’s Resistance Army, RCD-G = Rally for Congolese
Dem. (Goma), RCD-K = Rally for Congolese Dem. (Kinsangani), CNDP = Nat. Congress for
the Defense of the People, MAYI-K = Mayi-Mayi Militia (Kifuafua), MAYI-F = Mayi Mayi Milita
(Cmdt La Fontaine) and MAYI-J = Mayi-Mayi Militia (Cmdt Jackson).
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we exploit the exogenous variation over space and time in weather conditions. The signs of the
estimated coefficients conform with the prediction of the theory. Each group’s fighting effort is
increasing in the total fighting of its enemies and decreasing in the total fighting of its allies. We
then use our structural model to quantify the efficiency of various pacification policies. In particular
we perform a key player analysis to identify which groups contribute most to the escalation of the
conflict, either directly or indirectly, via the externalities they exercise on the other groups’ fighting
effort. The analysis highlight a number of interesting results, such as the key role of foreign armies
in the conflict escalation.

The Congo War is a natural testing ground for our theory for being a conflict where most
alliances and enmities are shallow links, and where many allied actors do not coordinate their
actions. However, informal alliances and enmities and intransitive links are by no means unique
to Congo. Rather, they are common fare in most modern civil conflicts, and pervasively so in for
example the conflicts of Afghanistan, Somalia, Iraq, Sudan and Syria.

Even in the case of more conventional international wars, shallow links and intransitive links
are not uncommon. For instance, the anti-Nazi alliance between the Soviet Union and the Anglo-
Americans during World War II was a tactical alliance to defeat a common enemy. Well before the
war was over, the Soviet Union and the Anglo-Americans were fighting strategically for conflicting
objectives, each trying to secure the best political and military post-war outcome.43 Another
example is the intricate situation in the Balkans during WWII.44 Similar considerations apply to
earlier wars, from the Peloponnesian War in ancient Greece, to the Napoleonic Wars (Ke, Konrad,
and Morath 2013), or to the alliances between warlords in China after the proclamation of the
Republic in 1912.

Our analysis takes the first step towards understanding how webs of alliances and enmities can
lead to escalation or containment of conflict. An important limitation is that we take the network
as exogenous, and do not try to model its formation or dynamic evolution. Endogenizing network
formation is a challenging extension that we leave to future research.
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Appendix

Appendix A Proofs

The proof of Proposition 1 proceeds by first deriving the necessary first order conditions (FOCs),
and then establishing that the second order conditions (SOCs) hold. For the latter, we provide a
condition (cf. equation (3)) on the admissible parameters such that agent i’s payoff, πi(x

∗
−i, xi, G),

given the other agents’ efforts, x∗
−i, is a locally concave function of xi for all agents i = 1, . . . , n.

This implies that the necessary FOCs are also sufficient and hence pin down a local maximum for
all agents.

Formally, this guarantees that the strategy profile x∗ is a local Nash equilibrium, which is
defined as follows:

Definition 2 (Alos-Ferrer and Ania, 2001). Consider a game with a finite number n of players,
where the strategy spaces Si are connected subsets of finite-dimensional Euclidean spaces, and the
payoff functions πi : S → R where S = S1 × · · · × Sn. A “local Nash equilibrium” for the game is a
strategy profile (xi)

n
i=1 ∈ S such that, for all players i, xi is a local maximum of πi (·,x−i), that is,

there exists ε > 0 such that, for all x′i in an ε-neighborhood of xi, πi (xi,x−i) ≥ πi (x
′
i,x−i) .

To ensure that this strategy profile x∗ is, in addition, a Nash equilibrium in the standard sense,
we must impose a lower bound xi (cf. equation (36) in the proof of Proposition 1) on the strategy
space of each agent to ensure that, given the other agents’ efforts x∗

−i, for agent i, x∗i is a best
reply over the entire admissible strategy space of i, given by [xi,∞). We then show that a common
lower bound on the strategy spaces is simply defined by x ≡ maxi=1,...,n xi. Under the condition
xi ∈ [x,∞) for each agent i we also obtain that x∗ is a Nash equilibrium.

Proof of Proposition 1. For our equilibrium characterization we start with the computation of
the FOCs. With equation (2) we can write the payoff of agent i as follows

πi(G,x) = V
ϕi∑n
j=1 ϕj

− xi

= V
xi + β

∑n
j=1 a

+
ijxj − γ

∑n
j=1 a

−
ijxj

∑n
j=1

(
xj + β

∑n
k=1 a

+
jkxk − γ

∑n
k=1 a

−
jkxk

) − xi. (24)

The partial derivatives are given by

∂πi
∂xi

= V

∂ϕi
∂xi

∑n
j=1 ϕj − ϕi

∑n
j=1

∂ϕj

∂xi(∑n
j=1 ϕj

)2 − 1

= V

∑n
j=1ϕj − ϕi(1 + βd+i − γd−i )(∑n

j=1 ϕj

)2 − 1, (25)

where we have used the fact that
∂ϕj

∂xi
= δij+βa

+
ij−γa

−
ij and consequently

∑n
j=1

∂ϕj

∂xi
= 1+βd+i −γd

−
i .

The FOCs are then given by ∂πi
∂xi

= 0. A simple manipulation of the FOC for each player i yields
the individual operational performance

ϕi =
1

1 + βd+i − γd−i


1−

1

V

n∑

j=1

ϕj




n∑

j=1

ϕj .
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Summation over i = 1, . . . , n gives the aggregate operational performance

n∑

i=1

ϕi = V


1−

1∑n
i=1

1
1+βd+i −γd−i


 .

In the following we denote by

Γβ,γ
i (G) ≡

1

1 + βd+i − γd−i
,

Λβ,γ(G) ≡ 1−
1∑n

i=1
1

1+βd+i −γd−i

= 1−
1

∑n
i=1 Γ

β,γ
i (G)

,

so that we can write aggregate operational performance at equilibrium as

n∑

i=1

ϕi = V Λβ,γ(G), (26)

and individual operational performance at equilibrium as

ϕi = V Λβ,γ(G)(1 − Λβ,γ(G))Γβ,γ
i (G). (27)

As shown below, by imposing restrictions such that the SOCs are satisfied (cf. equation (32)), we
obtain as a result that that the operational performances in equation (27) are non-negative. Note

that for the local hostility levels Γβ,γ
i (G) = 1

1+βd+i −γd−i
to be non-negative for all i = 1, . . . , n, we

need to require that 1+βd+i −γd−i ≥ 0. This holds if γd−i ≤ 1, so that we require that γ < 1/d−max.
It further follows that 1 − Λβ,γ(G) = 1

∑n
i=1 Γ

β,γ
i (G)

> 0 for a finite network (cf. Lemma 3). Next,

we have that Λβ,γ(G) = 1 − 1
∑n

i=1 Γ
β,γ
i (G)

> 0 is equivalent to
∑n

i=1 Γ
β,γ
i (G) > 1. Observe that

∑n
i=1 Γ

β,γ
i (G) =

∑n
i=1

1
1+βd+i −γd−i

≥
∑n

i=1
1

1+βd+i
≥ n

1+βd+max
. This is greater than one if β < n−1

d+max
,

and this holds if β < 1. By requiring that β + γ < 1/max{λmax(G
+), λmax(G

−)} we have that
β < 1 for any non-empty graph, and ϕi ≥ 0 for all i = 1, . . . , n in equation (27).

We next compute the equilibrium effort levels, based on the definition of operational perfor-
mance (2) that we combine with equation (27). We have that

xi + β
n∑

j=1

a+ijxj − γ
n∑

j=1

a−ijxj = V Λn,β(G)(1 − Λn,β(G))Γβ,γ
i (G), (28)

Denoting by Γβ,γ(G) ≡ (Γβ,γ
1 (G), . . . ,Γβ,γ

n (G))⊤, we can write this in vector-matrix form as

(In + βA+ − γA−)x = V Λβ,γ(G)(1 − Λβ,γ(G))Γβ,γ(G) (29)

We now proceed by deriving sufficient conditions such that the matrix In+βA
+−γA− is invertible.

Provided that the SOCs hold (see below), this also guarantees the existence and uniqueness of the
Nash equilibrium. Observe that the matrix In + βA+ − γA− is invertible if its determinant is not
zero. We first consider two special cases. First, assume that γ = 0. Then the inverse (In + βA)−1

exists only if |In+βA| 6= 0. We have that |In+βA| = 0 if and only if − 1
β is an eigenvalue ofA. If the

smallest eigenvalue λmin is such that β < 1/|λmin|, then this condition is satisfied. This is because
|λmin| <

1
β implies that − 1

β < λmin and we must have that − 1
β 6= λi for all i = 1, . . . , n. Second,
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assume that β = 0. Then the matrix In− γA− is invertible if γ < 1/λmax(G
−), where λmax(G

−) is
the largest real eigenvalue of G−. In the general case a sufficient condition for the matrix In+βA

+−
γA− to be invertible, is that β+γ < 1/max{λmax(G

+), λmax(G
−)}. This is because the determinant

of a matrix of the form In −
∑p

j=1 λjWj is strictly positive if
∑p

j=1 |λj| < 1/maxj=1,...,p ‖Wj‖,
where ‖Wj‖ is any matrix norm, including the spectral norm, which corresponds to the largest
eigenvalue of Wj (cf. e.g. Lee and Liu, 2010). A strictly positive determinant then implies
invertibility. Further, note that λmax(G

−) < d−max (Cvetkovic, Doob and Sachs 1995), so that
β + γ < 1/max{λmax(G

+), d−max} implies that β + γ < 1/max{λmax(G
+), λmax(G

−)}. From our
previous discussion we see that this also guarantees that the operational performances in equation
(27) are non-negative.

In the following we provide an explicit computation of the equilibrium fighting efforts when
invertibility holds. More precisely, when the matrix In + βA+ − γA− is invertible, we obtain from
(29) the equilibrium effort levels,

x∗ = V Λβ,γ(G)(1 − Λβ,γ(G)) (In + βA+ − γA−)−1Γβ,γ(G)︸ ︷︷ ︸
cβ,γ(G)

,

where we have introduced the centrality

cβ,γ(G) ≡ (In + βA+ − γA−)−1Γβ,γ(G).

We can write the equilibrium effort for each agent i as follows

x∗i = V Λβ,γ(G)(1 − Λβ,γ(G))cβ,γi (G). (30)

This is exactly equation (8) in the proposition. Moreover, equilibrium payoff is given by

π∗i (G) ≡ πi(x
∗, G) = V

ϕ∗
i (G)∑n

j=1ϕ
∗
j(G)

− x∗i = V (1− Λβ,γ(G))
(
Γβ,γ
i (G) − Λβ,γ(G)cβ,γi (G)

)
,

and we obtain equation (9) in the proposition.
In order to show that the necessary first order conditions are also sufficient, we next compute

the second order conditions (SOCs). From equation (25) we have that the second partial cross
derivative of agent i’s payoff is given by

∂2πi
∂xi∂xj

=
V

(
∑n

k=1 ϕk)
4



(

n∑

k=1

ϕk

)2( n∑

k=1

∂ϕk

∂xj
− (1 + βd+i − γd−i )

∂ϕi

∂xj

)

−2

(
n∑

k=1

ϕk

)(
n∑

k=1

ϕk − ϕi(1 + βd+i − γd−i )

)
n∑

k=1

∂ϕk

∂xj

]
.

Using the fact that
n∑

k=1

∂ϕk

∂xj
= 1 + βd+j − γd−j ,

and that

Γβ,γ
i (G) =

1

1 + βd+i − γd−i
,

n∑

k=1

ϕk = V Λβ,γ(G) = V
1

∑n
i=1 Γ

β,γ
i (G)

(
n∑

i=1

Γβ,γ
i (G)− 1

)
= V

u⊤Γβ,γ(G) − 1

u⊤Γβ,γ(G)
,

47



we can write the second partial cross derivative as

∂2πi
∂xi∂xj

=
1

V Λβ,γ(G)2

[
1− 2Λβ,γ(G)

Γβ,γ
j (G)

−
δij + β1{j∈N+

i } − γ1{j∈N−
i }

Γβ,γ
i (G)

]
. (31)

From equation (31) we find that

∂2πi
∂x2i

= −
2

V Λβ,γ(G)Γβ,γ
i (G)

= −
2

V

∑n
j=1 Γ

β,γ
j (G)

∑n
j=1 Γ

β,γ
j (G) − 1

(1 + βd+i − γd−i ), (32)

which is negative if Λβ,γ(G) > 0 and 1+βd+i − γd−i > 0. The last inequality requires that the local

hostility level of agent i is positive, i.e. Γβ,γ
i (G) > 0. It then follows that the equilibrium payoff

function is locally concave under the condition in equation (3).
In the remainder of the proof we show that the equilibrium payoff function is globally concave

over a specified domain, by bounding the effort levels (from below). This implies that the marginal
payoff of an agent from deviating from the Nash equilibrium strategy is always negative. Observe
that

πi(x
∗
−i, xi, G) = V

ϕi(x
∗
−i, x,G)∑n

j=1 ϕj(x
∗
−i, x,G)

− xi

= V
ϕi(x

∗, G)− (x∗i − xi)∑n
j=1 ϕj(x

∗, G) − (1 + βd+i − γd−i )(x
∗
i − xi)

− xi

= V
Aβ,γ

i (G) + Γβ,γ
i (G)xi

Bβ,γ
i (G) + xi

− xi, (33)

where we have denoted by

Aβ,γ
i (G) ≡ Γβ,γ

i (G)(ϕ∗
i − x∗i ) = V Λβ,γ(G)(1 − Λβ,γ(G))Γβ,γ

i (G)
(
Γβ,γ
i (G)− cβ,γi (G)

)
,

Bβ,γ
i (G) ≡ Γβ,γ

i (G)

n∑

j=1

ϕ∗
j − x∗i = V Λβ,γ(G)Γβ,γ

i (G)− x∗i = V Λβ,γ(G)
(
Γβ,γ
i (G) − (1− Λβ,γ(G))cβ,γi (G)

)
,

and the centrality cβ,γi (G) has been defined in equation (7). We first assume that Bβ,γ
i (G) >

0. Figure I illustrates the function πi(x
∗
−i, x,G) in equation (33) for different values of xi. For

xi > −Bβ,γ
i (G) it is concave with a maximum at x∗i , and decreasing for values of xi > x∗i with

an asymptote given by −xi.
45 In particular, if xi is larger than the discontinuity at −Bβ,γ

i (G) of
πi(x

∗
−i, x,G) then we have that πi(x

∗
−i, xi, G) < πi(x

∗, G). Note that πi(x
∗
−i, xi, G) < πi(x

∗, G) iff

V
Aβ,γ

i (G) + Γβ,γ
i (G)xi

Bβ,γ
i (G) + xi

− xi < π∗i = V
ϕ∗
i∑n

j=1ϕ
∗
j(G)

− x∗i

= V (1− Λβ,γ(G))Γβ,γ
i (G) − x∗i

= V (1− Λβ,γ(G))
(
Γβ,γ
i (G)− Λβ,γ(G)cβ,γi (G)

)
, (34)

45 Note that
∂2πi(x

∗

−i,xi,G)

∂x2
i

= −
2V

(

B
β,γ
i

(G)−A
β,γ
i

(G)/Γ
β,γ
i

(G)
)

Γ
β,γ
i

(G)

(B
β,γ
i

(G)+xi)
3

< 0 for xi > −Bβ,γ
i (G) and using the fact

that Bβ,γ
i (G) − Aβ,γ

i (G)/Γβ,γ
i (G) = Γβ,γ

i (G)
∑

j ϕ
∗
j − x∗

i − ϕ∗
i + x∗

i = V Γβ,γ
i (G)Λβ,γ(G) − ϕ∗

i = V Λβ,γ(G)Γβ,γ
i (G)−

V Λβ,γ(G)(1− Λβ,γ(G))Γβ,γ
i (G) = V Λβ,γ(G)2Γβ,γ

i (G) > 0.
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Figure I: The payoff function πi(x
∗
−i, xi, G) from equation (33) for different values of xi. The

horizontal red dashed line indicates π∗i , the red vertical dashed line indicates x∗i , while the blue

vertical solid line indicates the point of discontinuity, −Bβ,γ
i (G). If xi is larger than the discontinuity

at −Bβ,γ
i (G) then we have that πi(x

∗
−i, xi, G) < πi(x

∗, G). The blue dashed line indicates the
asymptote with slope −1.

where we have denoted by π∗i ≡ πi(x
∗, G). Next, observe from the FOC that

∂πi(x
∗
−i, xi, G)

∂xi
= −

Aβ,γ
i (G)−Bβ,γ

i (G)Γβ,γ
i (G) + (Bβ,γ

i (G) + xi)
2

(Bβ,γ
i (G) + xi)2

= 0, (35)

it follows that46

xi = −Bβ,γ
i (G) +

√
Bβ,γ

i (G)Γβ,γ
i (G) −Aβ,γ

i (G) = x∗i ,

and inserting into πi(x
∗
−i, xi, G) yields π

∗
i . We then define

xi ≡ −Bβ,γ
i (G). (36)

Assuming that Bβ,γ
i (G) ≥ 0 we get xi < 0. Note that if Bβ,γ

i (G) > 0 then the sign of Aβ,γ
i (G)

does not qualitatively change the functional form of πi(x
∗
−i, x,G) (more precisely, πi(x

∗
−i, x,G) is a

concave function for xi ≥ −Bβ,γ
i (G) with a global maximum over its domain at x∗i ; see also footnote

45). In contrast, if Bβ,γ
i (G) < 0 then we must have that Aβ,γ

i (G) must be negative as well. More

precisely, if Bβ,γ
i (G) < 0 then we must have that Aβ,γ

i (G) < Bβ,γ
i (G)Γβ,γ

i (G). Otherwise we would

have that
∂πi(x∗

−i,xi,G)

∂xi
< 0 (see equation (35)), violating the FOC. However, under this condition,

the functional form of πi(x
∗
−i, x,G) remains qualitatively unchanged.

To summarize, for all the above cases we have that πi(x
∗
−i, xi, G)−πi(x

∗, G) < 0 if xi ∈ [xi,∞).
Hence, this characterizes a Nash equilibrium. This completes the proof.

Remark 1. It is possible to compute a common lower bound in Proposition 1, x, on the effort levels
xi, such that πi(x

∗
−i, xi, G) − πi(x

∗, G) < 0 holds for all i = 1, . . . , n if x ∈ [x,∞)n. Moreover,

46W.l.o.g. set V = 1. Then, using the fact that Aβ,γ
i (G) = Γβ,γ

i (G)Λβ,γ(G)(1 − Λβ,γ(G))(Γβ,γ
i (G) − cβ,γi (G)),

Bβ,γ
i (G) = Λβ,γ(G)(Γβ,γ

i (G)−(1−Λβ,γ(G))cβ,γi (G)) and x∗
i = Λβ,γ(G)(1−Λβ,γ(G))cβ,γ

i (G), we find that −Bβ,γ
i (G)+

√

Bβ,γ
i (G)Γβ,γ

i (G)−Aβ,γ
i (G) = Λβ,γ(G)(1− Λβ,γ(G))cβ,γi (G) = x∗

i .
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we also require that x < x∗i for all i = 1, . . . , n. We denote this common lower bound as x ≡
maxi=1,...,n xi, and we require that ∀i = 1, . . . , n

x ≤ x∗i = V Λβ,γ(G)(1 − Λβ,γ(G))cβ,γi (G). (37)

Note that equation (37) is equivalent to

max
i=1,...,n

{
−Bβ,γ

i (G)
}
= max

i=1,...,n



x

∗
i − Γβ,γ

i (G)

n∑

j=1

ϕ∗
j



 ≤ min

i=1,...,n
x∗i ,

or

max
i=1,...,n

{
cβ,γi (G)−

Γβ,γ
i (G)

1− Λβ,γ(G)

}
≤ min

i=1,...,n
cβ,γi (G),

Note that this is equivalent to

max
i=1,...,n

Γβ,γ
i (G)︸ ︷︷ ︸

≥0 by Prop. 1


cβ,γi (G)/Γβ,γ

i (G)−
n∑

j=1

Γβ,γ
j (G)




︸ ︷︷ ︸
≤0 if Bβ,γ

i (G)≥0

≤ min
i=1,...,n

cβ,γi (G) (38)

Proof of Lemma 1. The proof of the lemma builds on a first order Taylor approximation in β
and γ of the centrality cβ,γ(G) defined in equation (7). Using the fact that In+βA

+−γA− = (In+
βA+)(In−γA

−)+βγA+A− = (In+βA
+)(In−γA

−)+O(βγ), and [(In + βA+)(In − γA−)]
−1

=
(In−γA

−)−1(In+βA
+)−1, where (In−γA

−)−1 =
∑∞

k=0 γ
k(A−)k and (In+βA

+)−1 =
∑∞

k=0(−1)kβk(A+)k,
we can write

(In + βA+ − γA−)−1 = (In − γA−)−1(In + βA+)−1 +O(βγ)

=

(
In + γA− +

∞∑

k=2

γk(A−)k

)(
In − βA+ +

∞∑

k=2

(−1)kβk(A+)k

)
+O(βγ)

= In + γA− − βA+ +
∞∑

k=2

γk(A−)k +
∞∑

k=2

(−1)kβk(A+)k + γA−
∞∑

k=2

(−1)kβk(A+)k

+

∞∑

k=2

γk(A−)kβA+ +

(
∞∑

k=2

γk(A−)k

)(
∞∑

k=2

(−1)kβk(A+)k

)
+O(βγ)

= In +

∞∑

k=1

γk(A−)k +

∞∑

k=1

(−1)kβk(A+)k +O(βγ). (39)

Hence, in leading order in β and γ the centrality in equation (7) can then be written as follows

cβ,γ(G) =

(
∞∑

k=0

γk(A−)k +
∞∑

k=0

(−1)kβk(A+)k − In

)
Γβ,γ(G) +O(βγ)

= bΓβ,γ(G)(γ,G
−) + bΓβ,γ(G)(−β,G

+)− Γβ,γ(G) +O(βγ).

This completes the proof.
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Figure II: (Left panel) Illustration of a bowtie graph, where the central agent is in conflict with all
other agents and the peripheral pairs of agents are allied. Alliances are indicated with thick lines
while conflict relationships are indicated with thin lines. (Right panel) The first-order approxima-
tion (dashed lines) used to derive the equilibrium efforts in equation (40), and the exact value (solid

lines) for the total centrality
∑n

i=1 c
β,γ
i (G) for different values of β and γ in the bowtie graph.

Proof of Lemma 2. The proof of the lemma builds on a first order Taylor approximation in β
and γ of the equilibrium fighting efforts x∗i (G) in equation (8) and payoffs π∗i (G) from equation
(9). First, observe that for β → 0 and γ → 0 we have that

Γβ,γ
i (G) =

1

1 + βd+i − γd−i
= 1− βd+i + γd−i +O

(
β2
)
+O

(
γ2
)
+O (βγ) ,

and

1− Λβ,γ(G) =
1

∑n
i=1 Γ

β,γ
i (G)

=
1

n
+

2

n2
(
βm+ − γm−

)
+O

(
β2
)
+O

(
γ2
)
+O (βγ) ,

where we have denoted by m+ = 1
2

∑n
i=1 d

+
i and m− = 1

2

∑n
i=1 d

−
i . Also, we have that

Λβ,γ(G)(1 − Λβ,γ(G)) =
n− 1

n2
−

2m−(n− 2)γ

n3
+

2m+(n− 2)β

n3
+O

(
β2
)
+O

(
γ2
)
+O (βγ) .

Moreover, from equation (39) in the proof of Lemma 1 we have that

(In + βA+ − γA−)−1 = (In − γA−)−1(In + βA+)−1 +O (βγ)

= (In + γA−)(In − βA+)(u+ γd+ − βd− +O
(
β2
)
+O

(
γ2
)
+O (βγ)

= In + γA− − βA+ +O
(
β2
)
+O

(
γ2
)
+O (βγ) .

It then follows that

(In + βA+ − γA−)−1Γβ,γ(G) = (In + γA− − βA+)(u+ γd− − βd+) +O
(
β2
)
+O

(
γ2
)
+O (βγ)

= u+ 2γd− − 2βd+ +O
(
β2
)
+O

(
γ2
)
+O (βγ) ,

and we get for the equilibrium fighting efforts x∗i (G) that

x∗i (G) = V Λβ,γ(G)(1 − Λβ,γ(G))((In + βA+ − γA−)−1Γβ,γ(G))i

= V

(
n− 1

n2
−

2m−(n− 2)γ

n3
+

2m+(n− 2)β

n3

)
(1 + 2γd−i − 2βd+i ) +O (βγ)

= V

(
n− 1

n2
−

2(n− 2)m− − 2n(n− 1)d−i
n3

γ +
2(n − 2)m+ − 2n(n− 1)d+i

n3
β

)
+O (βγ) .
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Denoting by Aβ,γ(G) ≡ n−1
n2 +β 2(n−2)

n3 m+−γ 2(n−2)
n3 m− and B ≡ 2(n−1)

n2 , we can write this as follows

x∗i (G) = V
(
Aβ,γ(G)−B

(
βd+i − γd−i

))
+O (βγ) . (40)

Next, note that the payoff of agent i in equilibrium is given by π∗i (G) = V (1− Λβ,γ(G))Γβ,γ
i (G)−

x∗i (G). Using the equilibrium effort from above it then follows that the equilibrium payoff of agent
i is given by

π∗i (G) = V (1− Λβ,γ(G))Γβ,γ
i (G) − x∗i (G)

=

(
1

n
−

2γm− − 2βm+

n2

)
(1 + γd−i − βd+i )− x∗i (G) +O (βγ)

= V

(
1

n2
+

4m+ + n(n− 2)d+i
n3

β −
4m− + n(n− 2)d−i

n3
γ

)
+O (βγ) .

Denoting by Cβ,γ(G) ≡ 1
n2 + β 4

n3m
+ − γ 4

n3m
− and D ≡ n−2

n2 , this can be written as follows

π∗i (G) = V
(
Cβ,γ(G) +D

(
βd+i − γd−i

))
+O (βγ) .

This completes the proof.

Figure II shows an illustration of the first-order approximation used to derive the equilibrium
efforts in equation (40), and the exact value for the total centrality

∑n
i=1 c

β,γ
i (G) for different values

of β and γ for a bowtie graph.
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Online Appendix B Proofs and Technical Analysis

In the following lemma we state additional results on the monotonicity and bounds on the local
hostility levels and the total local fighting intensity.

Lemma 3. Both the local hostility levels Γβ,γ
i (G) and the total local fighting intensity Λβ,γ(G) are

decreasing with β, and increasing with γ. Moreover if γ < 1/d−max then Γβ,γ
i (G) ≥ 0, and we have

that 0 ≤ Λβ,0(G) ≤ Λβ,γ(G) ≤ Λ0,γ(G) ≤ 1.

Proof of Lemma 3. We first analyze changes in the local hostility levels with chaining the pa-
rameters β and γ. Note that

∂Γβ,γ
i (G)

∂β
= −

d+i
(1 + βd+i − γdi−)2

= −d+i Γ
β,γ
i (G)2 ≤ 0,

and
∂Γβ,γ

i (G)

∂γ
=

d−i
(1 + βd+i − γd−i )

2
= d−i Γ

β,γ
i (G)2 ≥ 0,

Similarly, we find that

∂Λβ,γ(G)

∂β
= −

∑n
i=1 d

+
i Γ

β,γ
i (G)2

(∑n
i=1 Γ

β,γ
i (G)

)2 ≤ 0,

and
∂Λβ,γ(G)

∂γ
=

∑n
i=1 d

−
i Γ

β,γ
i (G)2

(∑n
i=1 Γ

β,γ
i (G)

)2 ≥ 0.

Hence, both Γβ,γ
i (G) and Λβ,γ(G) are decreasing with β, and increasing with γ. Hence, it follows

that
Λβ,0(G) ≤ Λβ,γ(G) ≤ Λ0,γ(G).

We further have that

Γβ,0
i (G) →

{
1, as β → 0,

1
1+d+i

, as β → 1,

and

Λβ,0(G) →

{
1− 1

n , as β → 0,

1− 1
nH (H+), as β → 1,

where H+ is the graph obtained by adding a loop to each node in G+, that is, the adjacency matrix
of H+ is given by In +A+, and

H (H+) ≡
1

1
n

∑n
i=1

1
di(H+)

=
1

1
n

∑n
i=1

1
d+i +1

is the harmonic mean of the degrees in H+. The maximum degree of H+ is bounded by n (n − 1

in G+), the harmonic mean H (H+) is bounded by n, and it follows from ∂Λn,β

∂β ≤ 0 that

0 ≤ 1−
β

n
H (H+) ≤ Λβ,0(G) ≤ 1−

1

n
≤ 1.
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In the case of β = 1 (perfect substitutes), Λ1,0(G) = 1 − 1
nH (H+) is an inverse measure of the

network density. In a complete graph Kn, we obtain Λ1,0(Kn) = 0, while in an empty graph Kn,
we get Λ1,0(Kn) = 1. It follows that in the case of γ = 0 and perfect substitutes when β = 1,
aggregate operational performance vanishes in the complete network, and is highest in the empty
network, i.e. the standard Tullock contest success game without effort spillovers.

Further, requiring that γ < 1/d−max it follows that

Γβ,γ
i =

1

1 + βd+i − γd−i
≥ Γ0,γ

i =
1

1− γd−i
> 0,

and the local hostility levels are non-negative for all i = 1, . . . , n. It then follows that

1− Λ0,γ(G) =
1

∑n
i=1 Γ

0,γ
i

≥ 0,

which is equivalent to Λ0,γ(G) ≤ 1. Hence, we have that 0 ≤ Λβ,0(G) ≤ Λβ,γ(G) ≤ Λ0,γ(G) ≤ 1.

We next provide a complete characterization for the key player strategy. The following propo-
sition characterizes the key player in terms of his position in the network.

Proposition 2. Let G\{i} be the network obtained from G by removing agent i and assume that
the conditions in Proposition 1 hold. Then the key player i∗ ∈ N ≡ {1, . . . , n} ∪ ∅ is given by

i∗ = argmax
i∈N

{
RDβ,γ(G)− RDβ,γ(G\{i})

}
,

where

RDβ,γ(G)− RDβ,γ(G\{i})

= V Λβ,γ(G)(1 − Λβ,γ(G))





n∑

j=i

cβ,γj (G) +
∑

j 6=i

hβ,γi (G)(1 − (1− Λβ,γ(G))hβ,γi (G))

1− Λβ,γ(G)

×
n∑

k=1

[(
mβ,γ

jk (G)−
mβ,γ

ij (G)mβ,γ
ik (G)

mβ,γ
ii (G)

)
Γβ,γ
k (G)

(
1 + βd+k − γd−k

1 + β(d+k − 1)− γd−k
1{k∈N+

i }

+
1 + βd+k − γd−k

1 + βd+k − γ(d−k − 1)
1{k∈N−

i } + 1{k/∈(N+
i ∪N−

i )}

)]}
, (41)

and we have defined by

hβ,γi (G) ≡


1− β

∑

j∈N+
i

Γβ,γ
j (G)(1 − Λβ,γ(G))

1 + β(d+j − 1)− γd−j
− γ

∑

j∈N−
i

Γβ,γ
j (G)(1 − Λβ,γ(G))

1 + βd+j − γ(d−j − 1)




−1

,

with mβ,γ
ij (G) being the ij-th element of the matrix Mβ,γ(G) = (In + βA+ − γA−)−1.

Proof of Proposition 2. Let G\{i} be the network obtained from G by removing agent i. Then
the key player i∗ ∈ N = {1, . . . , n} ∪ ∅ is given by

i∗ = argmax
i∈N

{
RDβ,γ(G)− RDβ,γ(G\{i})

}
.
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We can write the change in rent dissipation due to the removal of agent i as follows

RDβ,γ(G) − RDβ,γ(G\{i}) = V Λβ,γ(G)(1 − Λβ,γ(G))

×




n∑

j=1

cβ,γj (G)−
Λβ,γ(G\{i})(1 − Λβ,γ(G\{i}))

Λβ,γ(G)(1 − Λβ,γ(G))

n∑

j=1

cβ,γj (G\{i})


 .

With
∑n

j=1 c
β,γ
j (G) =

∑n
j=1m

β,γ
jk (G)Γβ,γ

k (G), where mβ,γ
ij (G) is the ij-th element of the matrix

Mβ,γ(G) = (In + βA+ − γA−)−1, we can write this as

RDβ,γ(G) − RDβ,γ(G\{i}) = V Λβ,γ(G)(1 − Λβ,γ(G))


cβ,γi (G) +

∑

j 6=i

∑

k

(
mβ,γ

jk (G)Γβ,γ
k (G)

−
Λβ,γ(G\{i})(1 − Λβ,γ(G\{i}))

Λβ,γ(G)(1 − Λβ,γ(G))
mβ,γ

jk (G\{i})Γβ,γ
k (G\{i})

)]
.

Using the fact that (cf. Lemma 1 in Ballester, Calvo-Armengol and Zenou 2006)

mβ,γ
jk (G\{i}) = mβ,γ

jk (G) −
mβ,γ

ij (G)mβ,γ
ik (G)

mβ,γ
ii (G)

,

and denoting by

hβ,γi (G) ≡
Λβ,γ(G\{i})(1 − Λβ,γ(G\{i}))

Λβ,γ(G)(1 − Λβ,γ(G))

=


1− β

∑

j∈N+
i

Γβ,γ
j (1− Λβ,γ(G))

1 + β(d+j − 1)− γd−j
− γ

∑

j∈N−
i

Γβ,γ
j (1− Λβ,γ(G))

1 + βd+j − γ(d−j − 1)




−1

,

one can show that

RDβ,γ(G) − RDβ,γ(G\{i}) = V Λβ,γ(G)(1 − Λβ,γ(G))





n∑

j=1

cβ,γj (G) +
∑

j 6=i

hβ,γi (G)(1 − (1− Λβ,γ(G)))hβ,γi (G)

1− Λβ,γ(G)

×
n∑

k=1

[(
mβ,γ

jk (G) −
mβ,γ

ij (G)mβ,γ
ik (G)

mβ,γ
ii (G)

)
Γβ,γ
k (G)

(
1 + βd+k − γd−k

1 + β(d+k − 1)− γd−k
1{k∈N+

i }

+
1 + βd+k − γd−k

1 + βd+k − γ(d−k − 1)
1{k∈N−

i } + 1{k/∈(N+
i ∪N−

i )}

)]}
, (42)

where 1{k∈N+
i } and 1{k∈N−

i } are indicator variables taking the value of one if, respectively, k ∈

N+
i and k ∈ N−

i , and zero otherwise. Then, the key player can be computed explicitly as

i∗ = argmax
i∈N





n∑

j=1

cβ,γj (G) +
∑

j 6=i

hβ,γi (G) (1−
(
1− Λβ,γ (G)

)
hβ,γi (G))

1− Λβ,γ (G)

×
n∑

k=1

[(
mβ,γ

jk (G)−
mβ,γ

ij (G)mβ,γ
ik (G)

mβ,γ
ii (G)

)
Γβ,γ
k (G)

(
1 + βd+k − γd−k

1 + β
(
d+k − 1

)
− γd−k

1{k∈N+
i }

+
1 + βd+k − γd−k

1 + βd+k − γ
(
d−k − 1

)1{k∈N−
i } + 1{k/∈(N+

i ∪N−
i )}

)]}
. (43)
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Remark 2. The key player identified in Proposition 2 differs from the one introduced in Ballester,
Calvo-Armengol and Zenou (2006). In the latter, the key player is defined as i∗ = argmaxi∈N
bu,i(G,α)/Wi(G,α) with bu,i(G,α) being the Bonacich centrality of agent i in G and Wi(G,α)
being the generating function of the number of closed walks that start and terminate at node i.47

Compared with our key player formula in equation (41) we find that it is more involved. This is
not surprising as the contest success function makes our payoff function generically non-linear.

In the following we provide a complete equilibrium characterization of the extension we have
introduced in Section 2.6. First, let assume that the fighting strength ϕi of agent i depends on an
idiosyncratic shifter ϕ̃i as in equation (13). Then the following proposition characterizes the local
Nash equilibrium.

Proposition 3. Assume that β + γ < 1/max{λmax(G
+), d−max}, where λmax (A

±) denotes the

largest eigenvalue associated with the matrix A±. Let Γβ,γ
i (G) and Λβ,γ (G) be defined as in equation

(6), and let

cβ,γ
µ

(G) ≡
(
In + βA+ − γA−

)−1
µ (44)

be a centrality vector, whose generic element cβ,γ
µ,i (G) describes the centrality of agent i in the

network for some vector µ ∈ R
n. Then there exists a unique local Nash equilibrium of the n–

player simultaneous move game with payoffs given by equation (1), agents’ OPs in equation (2)
and strategy space S = [x1,∞) × [x2,∞) × . . . × [xn,∞) ⊂ R

n, where the equilibrium effort levels
are given by

x∗i (G) = V Λβ,γ (G)
(
1− Λβ,γ (G)

)
cβ,γ
Γβ,γ(G),i

(G)− cβ,γ
ϕ̃,i(G), (45)

for all i = 1, . . . , n. Moreover, the equilibrium OPs are given by equation (26), and the equilibrium
payoffs are given by

π∗i (G) ≡ πi (x
∗, G) = V (1− Λβ,γ(G))

(
Γβ,γ
i (G)− Λβ,γ (G) cβ,γ

Γβ,γ(G),i
(G)
)
+ cβ,γ

ϕ̃,i (G). (46)

Proof of Proposition 3. In order to compute the equilibrium we start with deriving the necessary
first order conditions (FOCs). With equation (13) we can write the payoff of agent i as follows

πi(G,x) = V
ϕi∑n
j=1 ϕj

− xi

= V
xi + β

∑n
j=1 a

+
ijxj − γ

∑n
j=1 a

−
ijxj + ϕ̃i

∑n
j=1

(
xj + β

∑n
k=1 a

+
jkxk − γ

∑n
k=1 a

−
jkxk + ϕ̃j

) − xi. (47)

The partial derivatives are given by

∂πi
∂xi

= V

∂ϕi
∂xi

∑n
j=1 ϕj − ϕi

∑n
j=1

∂ϕj

∂xi(∑n
j=1 ϕj

)2 − 1

= V

∑n
j=1ϕj − ϕi(1 + βd+i − γd−i )(∑n

j=1 ϕj

)2 − 1, (48)

47See also equation (61) in the Online Appendix D.
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where we have used the fact that
∂ϕj

∂xi
= δij+βa

+
ij−γa

−
ij and consequently

∑n
j=1

∂ϕj

∂xi
= 1+βd+i −γd

−
i .

The first order conditions are then given by ∂πi
∂xi

= 0. From the partial derivative in equation (48)
the FOC can be written as follows

∂πi
∂xi

= V

∑n
j=1 ϕj − ϕi(1 + βd+i − γd−i )(∑n

j=1ϕj

)2 − 1 = 0,

from which we get

ϕi =
1

1 + βd+i − γd−i


1−

1

V

n∑

j=1

ϕj




n∑

j=1

ϕj .

Summation over i gives
n∑

i=1

ϕi = V


1−

1∑n
i=1

1
1+βd+i −γd−i


 .

With Γβ,γ
i (G) and Λβ,γ(G) as in equation (6) we can write the aggregate operational performance

as
n∑

i=1

ϕi = V Λβ,γ(G),

which is equivalent to equation (26). The individual operational performance can be written as

ϕi(G,x) = V Λβ,γ(G)(1 − Λβ,γ(G))Γβ,γ
i (G), (49)

which is equivalent to equation (26). We then get

ϕi(G,x) = xi + β

n∑

j=1

a+ijxj − γ

n∑

j=1

a−ijxj + ϕ̃i = V Λn,β(G)(1 − Λn,β(G))Γβ,γ
i (G). (50)

We can write

xi + β
n∑

j=1

a+ijxj − γ
n∑

j=1

a−ijxj = ϕi − ϕ̃i = V Λn,β(G)(1 − Λn,β(G))Γβ,γ
i (G) − ϕ̃i. (51)

Denoting by Γβ,γ(G) ≡ (Γβ,γ
1 (G), . . . ,Γβ,γ

n (G))⊤, we can write this in vector-matrix form as

(In + βA+ − γA−)x = V Λβ,γ(G)(1 − Λβ,γ(G))Γβ,γ(G)− ϕ̃.

When the matrix In + βA+ − γA− is invertible (see the proof of Proposition 1 for the conditions
that guarantee invertibility), we obtain a unique solution given by

x = V Λβ,γ(G)(1 − Λβ,γ(G))(In + βA+ − γA−)−1Γβ,γ(G)− (In + βA+ − γA−)−1
ϕ̃. (52)

With the definition of the centrality in equation (44) we then can write equation (52) in the form
of equation (45) in the proposition. Moreover, using the fact that equilibrium payoffs are given by

πi(x
∗, G) = V

ϕ∗
i (G)∑n

j=1 ϕ
∗
j (G) − x∗i we obtain equation (46) in the proposition.

Further, the second order partial derivatives, ∂2πi

∂x2
i
, are the same as in the proof of Proposition

1. In particular, it follows that ∂2πi

∂x2
i
< 0 if Λβ,γ(G) > 0 and 1+βd+i − γd−i > 0. The last inequality

5



requires that the local hostility level of agent i is positive, i.e. Γβ,γ
i (G) > 0. It then follows that

the equilibrium payoff function is locally concave at the efforts levels in equation (52).
As in the proof of Proposition 1 in the remainder of the proof we show that the equilibrium

payoff function is globally concave, by bounding the effort levels (from below). This implies that the
marginal payoff of an agent from deviating from the Nash equilibrium strategy is always negative.
Observe that

πi(x
∗
−i, xi, G) = V

ϕi(x
∗
−i, x,G)∑n

j=1 ϕj(x
∗
−i, x,G)

− xi

= V
ϕi(x

∗, G)− (x∗i − xi)∑n
j=1 ϕj(x

∗, G) − (1 + βd+i − γd−i )(x
∗
i − xi)

− xi

= V
Aβ,γ

i (G) + Γβ,γ
i (G)xi

Bβ,γ
i (G) + xi

− xi, (53)

where we have denoted by

Aβ,γ
i (G) ≡ Γβ,γ

i (G)(ϕ∗
i − x∗i ) = V Λβ,γ(G)(1 − Λβ,γ(G))Γβ,γ

i (G)
(
Γβ,γ
i (G)− cβ,γi (G)

)
+ Γβ,γ

i (G)c̃β,γi (G),

Bβ,γ
i (G) ≡ Γβ,γ

i (G)

n∑

j=1

ϕ∗
j − x∗i = V Λβ,γ(G)Γβ,γ

i (G)− x∗i

= V Λβ,γ(G)
(
Γβ,γ
i (G)− (1− Λβ,γ(G))cβ,γi (G)

)
+ c̃β,γi (G),

the centrality cβ,γi (G) has been defined in equation (7) and we have denoted by c̃β,γ(G) ≡ (In +

βA+ − γA−)−1
ϕ̃. Assume first that Bβ,γ

i (G) ≥ 0. For xi > −Bβ,γ
i (G) the function πi(x

∗
−i, x,G) is

concave in xi with a maximum at x∗i , and decreasing for values of xi > x∗i with an asymptote given

by −xi.
48 In particular, if xi is larger than the discontinuity at −Bβ,γ

i (G) of πi(x
∗
−i, x,G) then we

have that πi(x
∗
−i, xi, G) < πi(x

∗, G). In particular, we have that πi(x
∗
−i, xi, G) < πi(x

∗, G) iff

V
Aβ,γ

i (G) + Γβ,γ
i (G)xi

Bβ,γ
i (G) + xi

− xi < π∗i = V
ϕ∗
i∑n

j=1ϕ
∗
j(G)

− x∗i

= V (1− Λβ,γ(G))Γβ,γ
i (G) − x∗i

= V (1− Λβ,γ(G))
(
Γβ,γ
i (G)− Λβ,γ(G)cβ,γi (G)

)
+ c̃β,γi (G), (54)

where we have denoted by π∗i ≡ πi(x
∗, G). Next, observe that from the FOC

∂πi(x
∗
−i, xi, G)

∂xi
= −

Aβ,γ
i (G)−Bβ,γ

i (G)Γβ,γ
i (G) + (Bβ,γ

i (G) + xi)
2

(Bβ,γ
i (G) + xi)2

= 0, (55)

it follows that49

xi = −Bβ,γ
i (G) +

√
Bβ,γ

i (G)Γβ,γ
i (G) −Aβ,γ

i (G) = x∗i ,

48See footnote 45.
49W.l.o.g. assume that V = 1, Then using the fact that Aβ,γ

i (G) = Γβ,γ
i (G)Λβ,γ(G)(1 − Λβ,γ(G))(Γβ,γ

i (G) −
cβ,γ
i (G)) + Γβ,γ

i (G)c̃β,γ
i (G), Bβ,γ

i (G) = Λβ,γ(G)(Γβ,γ
i (G) − (1 − Λβ,γ(G))cβ,γ

i (G)) + c̃β,γ
i (G) and x∗

i = Λβ,γ(G)(1 −

Λβ,γ(G))cβ,γ
i (G)− c̃β,γi (G), we find that −Bβ,γ

i (G)+
√

Bβ,γ
i (G)Γβ,γ

i (G)− Aβ,γ
i (G) = Λβ,γ(G)(1−Λβ,γ(G))cβ,γi (G)−

c̃β,γ
i (G) = x∗

i .
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and inserting into πi(x
∗
−i, xi, G) yields π∗i . We then define xi ≡ −Bβ,γ

i (G). When Bβ,γ
i (G) ≥ 0 it

then follows that xi < 0. Note that if Bβ,γ
i (G) > 0 then the sign of Aβ,γ

i (G) does not qualitatively
change the functional form of πi(x

∗
−i, x,G) (more precisely, πi(x

∗
−i, x,G) is a concave function for

xi ≥ −Bβ,γ
i (G) with a global maximum over its domain at x∗i ; see also footnote 45). In contrast,

if Bβ,γ
i (G) < 0 then we must have that Aβ,γ

i (G) must be negative as well. More precisely, if

Bβ,γ
i (G) < 0 then we must have that Aβ,γ

i (G) < Bβ,γ
i (G)Γβ,γ

i (G). Otherwise we would have

that
∂πi(x∗

−i,xi,G)

∂xi
< 0 (see equation (55)), violating the FOC. However, under this condition, the

functional form of πi(x
∗
−i, x,G) remains qualitatively unchanged. Importantly, for all the above

cases we find that πi(x
∗
−i, xi, G) − πi(x

∗, G) < 0 if xi ∈ [xi,∞), and we obtain a local Nash
equilibrium (see Definition 2). This completes the proof.

Remark 3. Similar to Remark 1 it is possible to compute a common lower bound, x, on the
effort levels in Proposition 3 such that πi(x

∗
−i, xi, G) − πi(x

∗, G) < 0 holds for all i = 1, . . . , n
if x ∈ [x,∞)n. We also require that x < x∗i for all i = 1, . . . , n. These conditions then imply
a symmetric local Nash equilibrium (see Definition 2). We denote this common lower bound as
x ≡ maxi=1,...,n xi, and we require that ∀i = 1, . . . , n

x ≤ x∗i = V Λβ,γ(G)(1 − Λβ,γ(G))cβ,γi (G) − c̃β,γi (G). (56)

Observe that equation (56) is equivalent to

max
i=1,...,n

{
−Bβ,γ

i (G)
}
= max

i=1,...,n



x

∗
i − Γβ,γ

i (G)
n∑

j=1

ϕ∗
j



 ≤ min

i=1,...,n
x∗i ,

which is
max

i=1,...,n

{
x∗i − V Λβ,γ(G)Γβ,γ

i (G)
}
≤ min

i=1,...,n
x∗i ,

or equivalently

max
i=1,...,n

{
V Λβ,γ(G)

(
(1− Λβ,γ(G))cβ,γi (G)− Γβ,γ

i (G)
)
− c̃β,γi (G)

}

≤ min
i=1,...,n

{
V Λβ,γ(G)(1 − Λβ,γ(G))cβ,γi (G) − c̃β,γi (G)

}
. (57)
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Online Appendix C Tables for Key Player Analysis and Pacifica-

tion Policies

In this appendix we provide additional tables complementing the discussion in Sections 5.2 and 5.3.

8



Appendix Table I: Key player ranking for the first 35 actors in the Democratic Republic of the Congo (DRC) excluding government groups.a

The total number of groups is n = 85. The total number of alliances is m+(Gb) = 95, the total number of conflicts is m−(Gb) = 111 and we
have that

∑
j ϕ

∗
j(G

b) = 0.9891. The Pearson correlation of fighting effort in the benchmark with the reduction in the rent dissipation is 0.76.

Actor ∆RDβ̂,γ̂
k (%)b ϕ∗

i (G
b)/

∑

j ϕ
∗
j (G

b) (%) x∗
i (G

b)/RDβ̂,γ̂(Gb) (%) Rank x∗
i (G

b) Rank ∆RDβ̂,γ̂
k

FDLR: Dem. Forces for the Lib. of Rwanda 13.79 0.71 6.65 4 1
Mayi-Mayi Milita 9.67 0.69 5.59 6 2
Mil. Forc. of Rwanda (2000-) 9.57 1.91 3.65 10 3
Mil. Forc. of Uganda (1986-) 7.71 0.93 4.34 8 4
Lendu Ethnic Militia (DRC) 4.97 1.24 2.43 13 5
Mil. Forc. of Rwanda (1994-1999) 4.56 1.18 1.69 16 6
RCD: Rally for Congolese Dem. 4.49 0.98 1.75 15 7
Interahamwe Hutu Ethnic Militia 2.36 0.84 1.39 18 8
RCD: Rally for Congolese Dem. (Goma) 2.36 6.90 8.67 3 9
UPC: Union of Congolese Patriots 1.74 1.58 2.16 14 10
Mil. Forc. of Zimbabwe (1980-) 1.72 0.67 0.73 24 11
Hutu Rebels 1.46 0.99 0.52 27 12
Mil. Forc. of South Africa (1994-1999) 0.80 0.91 0.28 35 13
FAA/MPLA: Mil. Forc. of Angola (1975-) 0.75 0.76 0.36 31 14
Mayi Mayi Militia (PARECO) 0.72 0.68 0.37 29 15
Mil. Forc. of Namibia (1990-2005) 0.62 0.76 0.31 32 16
PUSIC: Party Unity & Safe. of Congo’s Integrity 0.54 1.33 0.26 36 17
Former Mil. Forc. of Rwanda (1973-1994) 0.45 0.79 0.24 37 18
Mil. Forc. of Sudan (1993-) 0.41 0.95 0.24 38 19
Mil. Forc. of Burundi (1996-2005) 0.27 1.20 0.29 33 20
Mayi-Mayi Militia (Yakutumba) 0.25 0.70 0.15 42 21
PPRD: People’s Party for Reconstr. & Dem. 0.13 1.09 0.13 43 22
ADFL: All. of Dem. Forces for Lib. (Congo-Zaire) (1996-1997) 0.11 1.33 0.06 55 23
Munzaya Ethnic Militia (DRC) 0.11 1.09 0.11 45 24
Mil. Forc. of Zambia (1991-2002 ) 0.10 1.20 0.05 62 25
Mayi Mayi Milita (Cmdt La Fontaine) 0.10 0.82 0.06 56 26
Mayi-Mayi Militia (Cmdt Jackson) 0.10 0.82 0.06 57 27
Wageregere Ethnic Militia 0.10 1.20 0.05 61 28
Mil. Forc. of Chad (1990-) 0.08 0.82 0.05 63 29
RCD: Rally for Congolese Dem. (Nat.) 0.06 0.70 0.03 72 30
Ngiti Ethnic Militia 0.06 0.96 0.03 70 31
Bomboma Ethnic Militia 0.06 1.20 0.08 50 32
RUD: Gathering for Unity & Dem. 0.06 1.20 0.05 60 33
Mayi-Mayi Militia (Kifuafua) 0.05 0.77 0.03 73 34
Alur Ethnic Militia (Uganda) 0.05 0.96 0.03 71 35

a We have used the parameter estimates β̂ = 0.1407 and γ̂ = 0.0903 while setting V = 1.
b The relative change in the rent dissipation is computed as ∆RDβ̂,γ̂

k (%) =
(

RDβ̂,γ̂(Gb)− RDβ̂,γ̂(Gb\{k})
)

/RDβ̂,γ̂(Gb), while the rent dissipation in the original

network Gb is RDβ̂,γ̂(Gb) =
∑n

i=1 x
∗
i (G

b) = 474.4614 (with V = 1). A positive value of ∆RDβ̂,γ̂
k thus indicates a reduction in fighting, while a negative value indicates

an increase in fighting.
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(continued) Appendix Table I: Key player ranking for the 36-th to the 80-th actors in the Democratic Republic of the Congo (DRC) excluding
government groups.

Actor ∆RDβ̂,γ̂
k (%) ϕ∗

i (G
b)/

∑

j ϕ
∗
j (G

b) (%) x∗
i (G

b)/RDβ̂,γ̂(Gb) (%) Rank x∗
i (G

b) Rank ∆RDβ̂,γ̂
k

Lendu Ethnic Militia (Uganda) 0.04 1.20 0.06 54 36
FLC: Congolese Lib. Front 0.04 1.49 0.16 40 37
Group of 47 0.03 1.09 0.03 68 38
Banyamulenge Ethnic Militia (DRC) 0.03 1.09 0.03 67 39
Mbingi Community Militia (DRC) 0.03 1.09 0.03 69 40
Mayi Mayi Militia (Mbuayi) 0.03 0.77 0.02 83 41
All. for Dem. Change 0.02 0.96 0.02 82 42
DSP: Division Speciale Presidentelle 0.02 0.96 0.02 81 43
FAP: Popular Self-Defense Forces 0.01 1.09 0.02 74 44
Hutu Refugees (Rwanda) 0.01 1.09 0.02 77 45
Mutiny of LRA: Lord’s Resistance Army 0.01 1.09 0.02 75 46
PRA: People’s Redemption Army 0.01 1.09 0.02 76 47
Mil. Forc. of Zaire (1965-1997) 0.01 1.09 0.02 78 48
Wangilima Ethnic Militia 0.01 1.09 0.02 79 49
Pygmy Ethnic Group (DRC) 0.01 1.09 0.02 80 50
Faustin Munene Militia (DRC) 0.00 1.09 0.00 84 51
UNAFEC: Union of Nat. Fed. of Congo Party (DRC) 0.00 1.09 0.00 85 52
CNDD-FDD (Ndayikengurukiye faction) -0.03 1.04 0.03 66 53
RCD: Rally for Congolese Dem. (Masunzu) -0.04 0.82 0.05 59 54
UPPS: Union for Dem. & Social Progr. Party (DRC) -0.04 1.33 0.03 65 55
FRF: Federal Republican Forces -0.08 1.20 0.05 58 56
Haut-Uele Resident Militia -0.09 1.04 0.06 53 57
Minembwe Dissidents -0.10 1.20 0.06 52 58
APCLS: All. of Patriots for a Free & Sov. Congo -0.11 1.04 0.06 51 59
Unnamed Mayi-Mayi Militia (DRC) -0.14 1.04 0.08 49 60
Lobala (Enyele) Militia -0.14 1.33 0.10 46 61
FNL: Nat. Forces of Lib. -0.16 1.14 0.10 47 62
Enyele Ethnic Militia (DRC) -0.17 1.20 0.11 44 63
UNITA: Nat. Union for the Total Indep. of Angola -0.27 0.99 0.15 41 64
BDK: Bunda Dia Kongo -0.29 1.20 0.19 39 65
CNDD-FDD: Nat. Council for the Defence of Dem. -0.37 1.71 0.71 25 66
ALIR: Army for the Lib. of Rwanda -0.42 1.33 0.36 30 67
NALU: Nat. Army for the Lib. of Uganda -0.56 0.99 0.28 34 68
MRC: Rev. Movement of Congo -0.56 0.91 0.47 28 69
SPLA/M: Sudanese People’s Lib. Army/Movement -0.87 1.04 0.73 23 70
FNI: Nat. & Integr. Front -1.17 1.04 0.84 22 71
FPJC: Popular Front for Justice in Congo -1.32 1.33 0.65 26 72
FRPI: Front for Patr. Resist. of Ituri -1.34 1.14 0.86 21 73
Hema Ethnic Militia (DRC) -1.78 0.98 0.94 20 74
ADF: Allied Dem. Forces -2.40 1.08 1.33 19 75
Mutiny of Mil. Forc. of DRC (2003-) -3.30 1.08 1.64 17 76
MLC: Congolese Lib. Movement -5.22 1.07 3.08 11 77
RCD: Rally for Congolese Dem. (Kisangani) -5.46 4.39 5.95 5 78
LRA: Lord’s Resistance Army -7.54 2.96 4.13 9 79
CNDP: Nat. Congress for the Defense of the People -8.78 1.18 4.35 7 80
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Appendix Table II: Key links ranking for the first 35 actors in the Democratic Republic of the Congo (DRC) excluding government groups.a

The total number of groups is n = 85. The total number of alliances is m+(Gb) = 95, the total number of conflicts is m−(Gb) = 111 and we
have that

∑
j ϕ

∗
j(G

b) = 0.9891. The Pearson correlation of fighting effort in the benchmark with the reduction in the rent dissipation is 0.72.

Actor ∆RDβ̂,γ̂
kj (%)b ϕ∗

i (G
b)/

∑

j ϕ
∗
j (G

b) (%) x∗
i (G

b)/RDβ̂,γ̂(Gb) (%) Rank x∗
i (G

b) Rank ∆RDβ̂,γ̂
kj

RCD: Rally for Congolese Dem. (Goma) 17.21 6.90 8.67 3 1
FDLR: Dem. Forces for the Lib. of Rwanda 9.68 0.71 6.65 4 2
RCD: Rally for Congolese Dem. (Kisangani) 8.74 4.39 5.95 5 3
LRA: Lord’s Resistance Army 4.30 2.96 4.13 9 4
CNDP: Nat. Congress for the Defense of the People 2.53 1.18 4.35 7 5
Lendu Ethnic Militia (DRC) 2.47 1.24 2.43 13 6
Mil. Forc. of Rwanda (2000-) 0.60 1.91 3.65 10 7
Mil. Forc. of Zimbabwe (1980-) 0.29 0.67 0.73 24 8
Mayi-Mayi Militia (Cmdt Jackson) 0.27 0.82 0.06 57 9
Mayi Mayi Milita (Cmdt La Fontaine) 0.27 0.82 0.06 56 10
Mil. Forc. of Uganda (1986-) 0.27 0.93 4.34 8 11
Mayi-Mayi Milita 0.25 0.69 5.59 6 12
Mil. Forc. of Sudan (1993-) 0.25 0.95 0.24 38 13
Mayi Mayi Militia (Mbuayi) 0.24 0.77 0.02 83 14
Mayi-Mayi Militia (Kifuafua) 0.24 0.77 0.03 73 15
Mil. Forc. of Chad (1990-) 0.24 0.82 0.05 63 16
Mayi-Mayi Militia (Yakutumba) 0.24 0.70 0.15 42 17
Former Mil. Forc. of Rwanda (1973-1994) 0.23 0.79 0.24 37 18
Mayi Mayi Militia (PARECO) 0.23 0.68 0.37 29 19
FAA/MPLA: Mil. Forc. of Angola (1975-) 0.22 0.76 0.36 31 20
Mil. Forc. of Namibia (1990-2005) 0.22 0.76 0.31 32 21
Interahamwe Hutu Ethnic Militia 0.20 0.84 1.39 18 22
MLC: Congolese Lib. Movement -1.98 1.07 3.08 11 23
Mil. Forc. of Rwanda (1994-1999) -3.08 1.18 1.69 16 24
UPC: Union of Congolese Patriots -3.27 1.58 2.16 14 25
RCD: Rally for Congolese Dem. -3.43 0.98 1.75 15 26
Hutu Rebels -5.28 0.99 0.52 27 27
Mil. Forc. of South Africa (1994-1999) -5.68 0.91 0.28 35 28
PUSIC: Party Unity & Safe. of Congo’s Integrity -7.20 1.33 0.26 36 29
Mil. Forc. of Zambia (1991-2002 ) -7.56 1.20 0.05 62 30
Wageregere Ethnic Militia -7.75 1.20 0.05 61 31
RCD: Rally for Congolese Dem. (Nat.) -7.76 0.70 0.03 72 32
Alur Ethnic Militia (Uganda) -8.01 0.96 0.03 71 33
All. for Dem. Change -8.07 0.96 0.02 82 34
Ngiti Ethnic Militia -8.14 0.96 0.03 70 35

a We have used the parameter estimates β̂ = 0.1407 and γ̂ = 0.0903 while setting V = 1.
b The relative change in the rent dissipation is computed as ∆RDβ̂,γ̂

kj (%) =
(

RDβ̂,γ̂(Gb)− RDβ̂,γ̂(Gb\{kj})
)

/RDβ̂,γ̂(Gb), while the rent dissipation in the original

network Gb is RDβ̂,γ̂(Gb) =
∑n

i=1 x
∗
i (G

b) = 474.4614 (with V = 1). A positive value of ∆RDβ̂,γ̂
kj thus indicates a reduction in fighting, while a negative value indicates

an increase in fighting.
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(continued) Appendix Table II: Key links ranking for the 36-th to the 80-th actors in the Democratic Republic of the Congo (DRC) excluding
government groups.

Actor ∆RDβ̂,γ̂
kj (%) ϕ∗

i (G
b)/

∑

j ϕ
∗
j (G

b) (%) x∗
i (G

b)/RDβ̂,γ̂(Gb) (%) Rank x∗
i (G

b) Rank ∆RDβ̂,γ̂
kj

DSP: Division Speciale Presidentelle -8.19 0.96 0.02 81 36
Mil. Forc. of Burundi (1996-2005) -8.20 1.20 0.29 33 37
ADFL: All. of Dem. Forces for Lib. (Congo-Zaire) (1996-1997) -8.23 1.33 0.06 55 38
PPRD: People’s Party for Reconstr. & Dem. -8.49 1.09 0.13 43 39
RUD: Gathering for Unity & Dem. -8.54 1.20 0.05 60 40
Munzaya Ethnic Militia (DRC) -8.54 1.09 0.11 45 41
CNDD-FDD: Nat. Council for the Defence of Dem. -8.60 1.71 0.71 25 42
Banyamulenge Ethnic Militia (DRC) -8.80 1.09 0.03 67 43
Group of 47 -8.80 1.09 0.03 68 44
Mbingi Community Militia (DRC) -8.80 1.09 0.03 69 45
FAP: Popular Self-Defense Forces -8.85 1.09 0.02 74 46
PRA: People’s Redemption Army -8.85 1.09 0.02 76 47
Mutiny of LRA: Lord’s Resistance Army -8.85 1.09 0.02 75 48
Hutu Refugees (Rwanda) -8.85 1.09 0.02 77 49
Mil. Forc. of Zaire (1965-1997) -8.85 1.09 0.02 78 50
Wangilima Ethnic Militia -8.85 1.09 0.02 79 51
Pygmy Ethnic Group (DRC) -8.85 1.09 0.02 80 52
Faustin Munene Militia (DRC) -8.90 1.09 -0.00 84 53
UNAFEC: Union of Nat. Fed. of Congo Party (DRC) -8.90 1.09 -0.00 85 54
Bomboma Ethnic Militia -9.05 1.20 0.08 50 55
FLC: Congolese Lib. Front -9.18 1.49 0.16 40 56
Lendu Ethnic Militia (Uganda) -9.28 1.20 0.06 54 57
SPLA/M: Sudanese People’s Lib. Army/Movement -9.84 1.04 0.73 23 58
FNI: Nat. & Integr. Front -10.15 1.04 0.84 22 59
MRC: Rev. Movement of Congo -10.34 0.91 0.47 28 60
RCD: Rally for Congolese Dem. (Masunzu) -10.90 0.82 0.05 59 61
Unnamed Mayi-Mayi Militia (DRC) -10.97 1.04 0.08 49 62
ALIR: Army for the Lib. of Rwanda -10.99 1.33 0.36 30 63
FRPI: Front for Patr. Resist. of Ituri -11.16 1.14 0.86 21 64
FNL: Nat. Forces of Lib. -11.44 1.14 0.10 47 65
Hema Ethnic Militia (DRC) -11.52 0.98 0.94 20 66
Mutiny of Mil. Forc. of DRC (2003-) -11.90 1.08 1.64 17 67
CNDD-FDD (Ndayikengurukiye faction) -12.13 1.04 0.03 66 68
NALU: Nat. Army for the Lib. of Uganda -12.72 0.99 0.28 34 69
Haut-Uele Resident Militia -13.06 1.04 0.06 53 70
UNITA: Nat. Union for the Total Indep. of Angola -13.48 0.99 0.15 41 71
BDK: Bunda Dia Kongo -13.86 1.20 0.19 39 72
Enyele Ethnic Militia (DRC) -14.22 1.20 0.11 44 73
UPPS: Union for Dem. & Social Progr. Party (DRC) -14.26 1.33 0.03 65 74
Minembwe Dissidents -14.44 1.20 0.06 52 75
FRF: Federal Republican Forces -14.51 1.20 0.05 58 76
Lobala (Enyele) Militia -14.53 1.33 0.10 46 77
APCLS: All. of Patriots for a Free & Sov. Congo -14.73 1.04 0.06 51 78
FPJC: Popular Front for Justice in Congo -16.73 1.33 0.65 26 79
ADF: Allied Dem. Forces -37.28 1.08 1.33 19 80
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Online Appendix D Bonacich Centrality

In this section we discuss a network measure capturing the centrality of an agent in the network
due to Bonacich (1987). Let A be the symmetric n × n adjacency matrix of the network G and
λmax its largest real eigenvalue. The matrix M(G,α) = (I−αA)−1 exists and is non-negative if
and only if α < 1/λmax.

50 Under this condition it can be written as

M(G,α) =
∞∑

k=0

αkAk. (58)

The vector of Bonacich centralities is then given by

bu(G,α) = M(G,α)u, (59)

where u = (1, . . . , 1)⊤ is an n-dimensional vector of ones. We can write the vector of Bonacich
centralities as

bu(G,α) = (I− αA)−1u =

∞∑

k=0

αkAku.

For the components bu,i(G,α), i = 1, . . . , n, we get

bu,i(G,α) =
∞∑

k=0

αk(Ak · u)i =
∞∑

k=0

αk
n∑

j=1

a
[k]
ij , (60)

where a
[k]
ij is the ij-th element of Ak. Because Nk,i(G) ≡

∑n
j=1 a

[k]
ij counts the number of all walks

of length k in G starting from i, the Bonacich centrality of agent i, bu,i(G,α), is thus equivalent
to the number of all walks in G starting from i, where the walks of length k are weighted by a
geometrically decaying factor αk.

Further, the sum of the Bonacich centralities,
∑n

i=1 bu,i(G,α) = u⊤bu(G,α) = u⊤M(G,α)u, is
equivalent to walk generating function of the graph G, denoted by N(G,α) (cf. Cvetkovic, 1995).
To see this, let Nk(G) ≡

∑n
i=1Nk,i(G) denote the number of walks of length k in G. Then we can

write Nk(G) as follows Nk(G) =
∑n

i=1

∑n
j=1 a

[k]
ij = u⊤Aku. The walk generating function is then

defined as

N(G,α) ≡
∞∑

k=0

Nk(G)α
k = u⊤

(
∞∑

k=0

αkAk

)
u = u⊤ (In − αA)−1

u = u⊤M(G,α)u.

Moreover, the generating function of the number of closed walks that start and terminate at node
i is given by

Wi(G,α) ≡
∞∑

k=0

a
[k]
ii α

k. (61)

The Bonacich matrix of equation (58) is also a measure of structural similarity of the agents
in the network, called regular equivalence. Blondel et al. (2004) and Leicht et al. (2006) define
a similarity score bij, which is high if nodes i and j have neighbors that themselves have high
similarity, given by bij = α

∑n
k=1 aikbkj + δij . In matrix-vector notation this reads M = αAM+ I.

Rearranging yields M = (I − αA)−1 =
∑∞

k=0 α
kAk, assuming that α < 1/λmax. We hence obtain

50The proof can be found e.g. in Debreu and Herstein (1953).
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that the similarity matrix M is equivalent to the Bonacich matrix from equation (58). The average
similarity of agent i is 1

n

∑n
j=1 bij = 1

nbu,i(G,α), where bu,i(G,α) is the Bonacich centrality of i.
It follows that the Bonacich centrality of i is proportional to the average regular equivalence of i.
Agents with a high Bonacich centrality are then the ones which also have a high average structural
similarity with the other agents in the network.

The interpretation of eingenvector-like centrality measures as a similarity index is also important
in the study of correlations between observations in principal component analysis and factor analysis
(cf. Rencher and Christensen, 2012). Variables with similar factor loadings can be grouped together.
This basic idea has also been used in the economics literature on segregation (e.g. Ballester and
Vorsatz, 2014; Echenique and Fryer Jr., 2007; Echenique et al., 2006).
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